SCDS394A March   2021  – October 2021 TMUX7462F

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Electrical Characteristics (Global)
    6. 6.6  ±15 V Dual Supply: Electrical Characteristics
    7. 6.7  ±20 V Dual Supply: Electrical Characteristics
    8. 6.8  12 V Single Supply: Electrical Characteristics
    9. 6.9  36 V Single Supply: Electrical Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1  On-Resistance
    2. 7.2  On-Leakage Current
    3. 7.3  Input and Output Leakage Current under Overvoltage Fault
    4. 7.4  Fault Response Time
    5. 7.5  Fault Recovery Time
    6. 7.6  Fault Flag Response Time
    7. 7.7  Fault Flag Recovery Time
    8. 7.8  Fault Drain Enable Time
    9. 7.9  Inter-Channel Crosstalk
    10. 7.10 Bandwidth
    11. 7.11 THD + Noise
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Flat ON-Resistance
      2. 8.3.2 Protection Features
        1. 8.3.2.1 Input Voltage Tolerance
        2. 8.3.2.2 Powered-Off Protection
        3. 8.3.2.3 Fail-Safe Logic
        4. 8.3.2.4 Overvoltage Protection and Detection
        5. 8.3.2.5 Latch-Up Immunity
        6. 8.3.2.6 EMC Protection
      3. 8.3.3 Overvoltage Fault Flags
      4. 8.3.4 Bidirectional Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Mode
      2. 8.4.2 Fault Mode
      3. 8.4.3 Truth Table
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Performance Plots
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • RRP|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TMUX7462F is a four-channel protector that can be placed in series with the signal path to protect sensitive components downstream from overvoltage faults. The channel protector prevents overvoltages in both powered and powered-off conditions, making it suitable for applications where correct power supply sequencing cannot be precisely controlled. The powered-off condition includes floating power supplies, grounded power supplies, or power supplies at any level that are below the undervoltage (UV) threshold. The internal switch is turned-on and turned-off autonomously based on the fault situation without the need of external controls, making the device extremely easy to implement in the system. The primary supply voltages define the on-resistance profile, while the secondary supply voltages define the voltage level at which the overvoltage protection engages. The device works well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as VDD = 12 V, VSS = –5 V).