SLVSDW2B December   2018  – November 2020 TPS23755

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: DC-DC Controller Section
    6. 6.6 Electrical Characteristics: PoE and Control
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  CLS Classification
      2. 7.3.2  DEN Detection and Enable
      3. 7.3.3  Internal Pass MOSFET
      4. 7.3.4  DC-DC Controller Features
        1. 7.3.4.1 VCC, VB and Advanced PWM Startup
        2. 7.3.4.2 CS, Current Slope Compensation and Blanking
        3. 7.3.4.3 COMP, FB, CP and Opto-less Feedback
        4. 7.3.4.4 FRS Frequency Setting and Synchronization
        5. 7.3.4.5 Frequency Dithering for Spread Spectrum Applications
        6. 7.3.4.6 SST and Soft-Start of the Switcher
        7. 7.3.4.7 AUX_V, AUX_D and Secondary Adapter Or'ing
      5. 7.3.5  Internal Switching FET - DRAIN, RSNS, SRF and SRR
      6. 7.3.6  VPD Supply Voltage
      7. 7.3.7  VDD Supply Voltage
      8. 7.3.8  GND
      9. 7.3.9  VSS
      10. 7.3.10 Exposed Thermal PAD
    4. 7.4 Device Functional Modes
      1. 7.4.1 PoE Overview
      2. 7.4.2 Threshold Voltages
      3. 7.4.3 PoE Start-Up Sequence
      4. 7.4.4 Detection
      5. 7.4.5 Hardware Classification
      6. 7.4.6 Maintain Power Signature (MPS)
      7. 7.4.7 Start-Up and Converter Operation
      8. 7.4.8 PD Self-Protection
      9. 7.4.9 Adapter ORing
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Input Bridges and Schottky Diodes
        2. 8.2.2.2  Protection, D1
        3. 8.2.2.3  Capacitor, C1
        4. 8.2.2.4  Detection Resistor, RDEN
        5. 8.2.2.5  Classification Resistor, RCLS
        6. 8.2.2.6  Bulk Capacitance, CBULK
        7. 8.2.2.7  Output Voltage Feedback Divider, RAUX, R1,R2
        8. 8.2.2.8  Setting Frequency, RFRS
        9. 8.2.2.9  Frequency Dithering, RDTR and CDTR
        10. 8.2.2.10 Bias Voltage, CVB and DVB
        11. 8.2.2.11 Transformer design, T1
        12. 8.2.2.12 Current Sense Resistor, RCS
        13. 8.2.2.13 Current Slope Compensation, RS
        14. 8.2.2.14 Bias Supply Requirements, CCC, DCC
        15. 8.2.2.15 Switching Transformer Considerations, RVCC and CCC2
        16. 8.2.2.16 Primary FET Clamping, RCL, CCL, and DCL
        17. 8.2.2.17 Converter Output Capacitance, COUT
        18. 8.2.2.18 Secondary Output Diode Rectifier, DOUT
        19. 8.2.2.19 Slew rate control, RSRF and RSRR
        20. 8.2.2.20 Shutdown at Low Temperatures, DVDD and CVDD
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • RJJ|23
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Hardware Classification

Hardware classification allows a PSE to determine the power requirements of a PD before starting, and helps with power management once power is applied. The maximum power entries in Table 7-1 determine the class the PD must advertise. A Type 1 PD may not advertise Class 4. The PSE may disconnect a PD if it draws more than its stated Class power. The standard permits the PD to draw limited current peaks; however, the average power requirement always applies.

Voltage from 14.5 V to 20.5 V is applied to the PD for up to 75 ms during hardware classification. A fixed output voltage is sourced by the CLS pin, causing a fixed current to be drawn from VPD through RCLS. The total current drawn from the PSE during classification is the sum of bias and RCLS currents. PD current is measured and decoded by the PSE to determine which of the five available classes is advertised (see Table 7-1). The TPS23755 disables classification above VCU_OFF to avoid excessive power dissipation. CLS voltage is turned off during PD thermal limit or when DEN is active. The CLS output is inherently current-limited, but should not be shorted to VSS for long periods of time.