SLVSCL5 June   2014 TPS2559

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 Handling Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Thermal Sense
      2. 10.3.2 Overcurrent Protection
      3. 10.3.3 FAULT Response
    4. 10.4 Device Functional Modes
      1. 10.4.1 Operation with VIN Undervoltage Lockout (UVLO) Control
      2. 10.4.2 Operation with EN Control
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Step by Step Design Procedure
        2. 11.2.2.2 Input and Output Capacitance
        3. 11.2.2.3 Programming the Current-Limit Threshold
        4. 11.2.2.4 Design Above a Minimum Current Limit
        5. 11.2.2.5 Design Below a Maximum Current Limit
        6. 11.2.2.6 Accounting for Resistor Tolerance
        7. 11.2.2.7 Power Dissipation and Junction Temperature
        8. 11.2.2.8 Auto-Retry
        9. 11.2.2.9 Two-level Current-limit
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Trademarks
    2. 14.2 Electrostatic Discharge Caution
    3. 14.3 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

13 Layout

13.1 Layout Guidelines

  • Place the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low-inductance trace.
  • Placing a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin is recommended when large transient currents are expected on the output.
  • The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects on the current limit accuracy.
  • The PowerPAD should be directly connected to PCB ground plane using wide and short copper trace.

13.2 Layout Example

layout_slvscl54.gifFigure 31. TPS2559 Board Layout