SLVSFJ9 September   2021 TPS25854-Q1 , TPS25855-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Switching Characteristics
    8. 8.8 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1  Power Down or Undervoltage Lockout
      2. 10.3.2  Input Overvoltage Protection (OVP) - Continuously Monitored
      3. 10.3.3  Buck Converter
      4. 10.3.4  FREQ/SYNC
      5. 10.3.5  Bootstrap Voltage (BOOT)
      6. 10.3.6  Minimum ON-time, Minimum OFF-time
      7. 10.3.7  Internal Compensation
      8. 10.3.8  Current Limit and Short Circuit Protection
        1. 10.3.8.1 USB Switch Programmable Current Limit (ILIM)
        2. 10.3.8.2 Cycle-by-Cycle Buck Current Limit
        3. 10.3.8.3 OUT Current Limit
      9. 10.3.9  Cable Compensation
      10. 10.3.10 Thermal Management With Temperature Sensing (TS) and OTSD
      11. 10.3.11 Thermal Shutdown
      12. 10.3.12 FAULT Indication
      13. 10.3.13 USB Specification Overview
      14. 10.3.14 USB Type-C® Basics
        1. 10.3.14.1 Configuration Channel
        2. 10.3.14.2 Detecting a Connection
        3. 10.3.14.3 Plug Polarity Detection
      15. 10.3.15 USB Port Operating Modes
        1. 10.3.15.1 USB Type-C® Mode
        2. 10.3.15.2 Dedicated Charging Port (DCP) Mode
          1. 10.3.15.2.1 DCP BC1.2 and YD/T 1591-2009
          2. 10.3.15.2.2 DCP Divider-Charging Scheme
          3. 10.3.15.2.3 DCP 1.2-V Charging Scheme
        3. 10.3.15.3 DCP Auto Mode
    4. 10.4 Device Functional Modes
      1. 10.4.1 Shutdown Mode
      2. 10.4.2 Active Mode
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Applications
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Output Voltage Setting
        2. 11.2.2.2 Switching Frequency
        3. 11.2.2.3 Inductor Selection
        4. 11.2.2.4 Output Capacitor Selection
        5. 11.2.2.5 Input Capacitor Selection
        6. 11.2.2.6 Bootstrap Capacitor Selection
        7. 11.2.2.7 Undervoltage Lockout Set-Point
        8. 11.2.2.8 Cable Compensation Set-Point
        9. 11.2.2.9 FAULT, POL, and THERM_WARN Resistor Selection
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
    3. 13.3 Ground Plane and Thermal Considerations
  14. 14Device and Documentation Support
    1. 14.1 Receiving Notification of Documentation Updates
    2. 14.2 Support Resources
    3. 14.3 Trademarks
    4. 14.4 Electrostatic Discharge Caution
    5. 14.5 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS2585x-Q1 is full-featured solution for implementing a compact USB charging port with support for both Type-C and BC1.2 standards. Both devices contain an efficient buck regulator power source. For single Type-C port, the TPS2585x-Q1 is capable of providing 3.4 A of output current at 5.1 V (nominal), which is 3 A for Type-C port, 200 mA for OUT pin, and 200 mA for VCONN power. The TPS2585x-Q1 is an automotive-focused USB charging controller, to offer a robust solution, TI recommends to add adequate protection (TVS3300 equivalent or better but auto quality) on IN pin to protect systems from high power transients or lightning strikes.

System designers can optimize efficiency or solution size through careful selection of switching frequency in the range of 200 kHz–2400 kHz with sufficient margin to operate above or below the AM radio frequency band. TPS2585x-Q1 protects itself with internal thermal sensing circuits that monitor the operating temperature of the junction and disables operation if the temperature exceeds the Thermal Shutdown threshold, so in high ambient temperature application, the 3.4-A output current capability is not assured. In the TPS2585x-Q1, the buck regulator operates in forced PWM mode, ensuring fixed switching frequency regardless of load current. Spread-spectrum frequency dithering reduces harmonic peaks of the switching frequency, potentially simplifying EMI filter design and easing compliance.

Current sensing through a precision FET current sense amplifier on USB port enables an accurate, user programmable over-current limit setting, and programmable linear cable compensation to overcome IR losses when powering remote USB ports.

TPS2585x-Q1 includes a TS input for user programmable thermal protection using a negative temperature coefficient (NTC) resistor. The TPS25855-Q1 has THERM_WARN flag to indicate the NTC temperature is warm before it enters the temperature hot range.

Both devices can support the USB Type-C protocol, and also support the legacy Battery Charging Specification Rev 1.2 (BC1.2) DCP mode with auto-detect feature to charge not only BC1.2 compliant hand-held devices but also popular phones and tablets that incorporate their own propriety charging algorithm. The TPS2585x-Q1 also supports USB cable polarity detection and fault condition detection.