SLUSAU4B DECEMBER   2011  – February 2019 TPS53219A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Enable and Soft-Start
      2. 7.3.2  Adaptive ON-Time D-CAP Control and Frequency Selection
      3. 7.3.3  Small Signal Model
      4. 7.3.4  Ramp Signal
      5. 7.3.5  Adaptive Zero Crossing
      6. 7.3.6  Output Discharge Control
      7. 7.3.7  Low-Side Driver
      8. 7.3.8  High-Side Driver
      9. 7.3.9  Power Good
      10. 7.3.10 Current Sense and Overcurrent Protection
      11. 7.3.11 Overvoltage and Undervoltage Protection
      12. 7.3.12 UVLO Protection
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Light Load Condition in Auto-Skip Operation
      2. 7.4.2 Forced Continuous Conduction Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application With Power Block
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 External Components Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Application With Ceramic Output Capacitors
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 External Parts Selection With All Ceramic Output Capacitors
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Adaptive ON-Time D-CAP Control and Frequency Selection

The TPS53219A does not have a dedicated oscillator that determines switching frequency. However, the device operates with pseudo-constant frequency by feed-forwarding the input and output voltages into the ON-time one-shot timer. The adaptive ON-time control adjusts the ON-time to be inversely proportional to the input voltage and proportional to the output voltage (tON ∝ VOUT/VIN).

This makes the switching frequency fairly constant in steady-state conditions over a wide input voltage range. The switching frequency is selectable from eight preset values by a resistor connected between the RF pin and GND or between the RF pin and the VREG pin as shown in Table 2. Leaving the resistance open sets the switching frequency to 500 kHz.

Table 2. Resistor and Switching Frequency

RESISTOR (RRF) CONNECTIONS SWITCHING
FREQUENCY (kHz)
0 Ω to GND 250
187 kΩ to GND 300
619 kΩ to GND 400
Open 500
866 kΩ to VREG 650
309 kΩ to VREG 750
124 kΩ to VREG 850
0 Ω to VREG 970

The OFF-time is modulated by a PWM comparator. The VFB node voltage (the mid-point of resistor divider) is compared to the internal 0.6-V reference voltage added with a ramp signal. When both signals match, the PWM comparator asserts a set signal to terminate the OFF-time (turn off the low-side MOSFET and turn on high-side MOSFET). The set signal is valid if the inductor current level is below the OCP threshold, otherwise the off time is extended until the current level falls below the threshold.