SLVS839F July   2008  – October 2014 TPS54331

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
    1.     TPS54331 (D Package) Efficiency
  5. Revision History
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed-Frequency PWM Control
      2. 8.3.2  Voltage Reference (Vref)
      3. 8.3.3  Bootstrap Voltage (BOOT)
      4. 8.3.4  Enable and Adjustable Input Undervoltage Lockout (VIN UVLO)
      5. 8.3.5  Programmable Slow Start Using SS Pin
      6. 8.3.6  Error Amplifier
      7. 8.3.7  Slope Compensation
      8. 8.3.8  Current-Mode Compensation Design
      9. 8.3.9  Overcurrent Protection and Frequency Shift
      10. 8.3.10 Overvoltage Transient Protection
      11. 8.3.11 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Eco-mode™
      2. 8.4.2 Operation With VIN < 3.5 V
      3. 8.4.3 Operation With EN Control
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design with WEBENCH Tools
        2. 9.2.2.2  Switching Frequency
        3. 9.2.2.3  Output Voltage Set Point
        4. 9.2.2.4  Input Capacitors
        5. 9.2.2.5  Output Filter Components
          1. 9.2.2.5.1 Inductor Selection
        6. 9.2.2.6  Capacitor Selection
        7. 9.2.2.7  Compensation Components
        8. 9.2.2.8  Bootstrap Capacitor
        9. 9.2.2.9  Catch Diode
        10. 9.2.2.10 Output Voltage Limitations
        11. 9.2.2.11 Power Dissipation Estimate
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Electromagnetic Interference (EMI) Considerations
  12. 12Device and Documentation Support
    1. 12.1 Custom Design with WEBENCH Tools
    2. 12.2 Device Support
      1. 12.2.1 Development Support
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

The VIN pin should be bypassed to ground with a low-ESR ceramic bypass capacitor. Care should be taken to minimize the loop area formed by the bypass capacitor connections, the VIN pin, and the anode of the catch diode. The typical recommended bypass capacitor is 10-μF ceramic with a X5R or X7R dielectric and the optimum placement is closest to the VIN pins and the source of the anode of the catch diode. Figure 25 shows a PCB layout example. The GND pin should be tied to the PCB ground plane at the pin of the device. The source of the low-side MOSFET should be connected directly to the top side PCB ground area used to tie together the ground sides of the input and output capacitors as well as the anode of the catch diode. The PH pin should be routed to the cathode of the catch diode and to the output inductor. Because the PH connection is the switching node, the catch diode and output inductor should be located very close to the PH pins, and the area of the PCB conductor minimized to prevent excessive capacitive coupling. For operation at full rated load, the top-side ground area must provide adequate heat dissipating area. The TPS54331 device uses a fused lead frame so that the GND pin acts as a conductive path for heat dissipation from the die. Many applications have larger areas of internal or back-side ground plane available, and the top-side ground area can be connected to these areas using multiple vias under or adjacent to the device to help dissipate heat. The additional external components can be placed approximately as shown. Obtaining acceptable performance with alternate layout schemes may be possible, however this layout has been shown to produce good results and is intended as a guideline.