SLVSAF1E October   2010  – May 2019 TPS54388-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Efficiency Curve
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Fixed-Frequency PWM Control
      2. 7.3.2 Slope Compensation and Output Current
      3. 7.3.3 Bootstrap Voltage (BOOT) and Low-Dropout Operation
      4. 7.3.4 Error Amplifier
      5. 7.3.5 Voltage Reference
    4. 7.4 Device Functional Modes
      1. 7.4.1  Adjusting the Output Voltage
      2. 7.4.2  Enable Functionality and Adjusting Undervoltage Lockout
      3. 7.4.3  Slow-Start or Tracking Pin
      4. 7.4.4  Sequencing
      5. 7.4.5  Constant Switching Frequency and Timing Resistor (RT/CLK Pin)
      6. 7.4.6  Overcurrent Protection
      7. 7.4.7  Frequency Shift
      8. 7.4.8  Reverse Overcurrent Protection
      9. 7.4.9  Synchronize Using the RT/CLK Pin
      10. 7.4.10 Power Good (PWRGD Pin)
      11. 7.4.11 Overvoltage Transient Protection
      12. 7.4.12 Thermal Shutdown
      13. 7.4.13 Small-Signal Model for Loop Response
      14. 7.4.14 Simple Small-Signal Model for Peak-Current-Mode Control
      15. 7.4.15 Small-Signal Model for Frequency Compensation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Selecting the Switching Frequency
        3. 8.2.2.3  Output Inductor Selection
        4. 8.2.2.4  Output Capacitor
        5. 8.2.2.5  Input Capacitor
        6. 8.2.2.6  Slow-Start Capacitor
        7. 8.2.2.7  Bootstrap Capacitor Selection
        8. 8.2.2.8  Output-Voltage and Feedback-Resistor Selection
        9. 8.2.2.9  Compensation
        10. 8.2.2.10 Power-Dissipation Estimate
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Third-Party Products Disclaimer
    2. 11.2 Device Support
      1. 11.2.1 Development Support
        1. 11.2.1.1 Custom Design With WEBENCH® Tools
    3. 11.3 Documentation Support
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resource
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bootstrap Voltage (BOOT) and Low-Dropout Operation

The TPS54388-Q1 device has an integrated boot regulator and requires a small ceramic capacitor between the BOOT and PH pins to provide the gate-drive voltage for the high-side MOSFET. The value of the ceramic capacitor should be 0.1 μF. TI recommends a ceramic capacitor with an X7R- or X5R-grade dielectric with a voltage rating of 10 V or higher because of the stable characteristics over temperature and voltage.

The TPS54388-Q1 design improves dropout by operating at 100% duty cycle as long as the BOOT-to-PH pin voltage is greater than 2.2 V. A UVLO circuit turns off the high-side MOSFET, allowing for the low-side MOSFET to conduct when the voltage from BOOT to PH drops below 2.2 V. Because the supply current sourced from the BOOT pin is low, the high-side MOSFET can remain on for more switching cycles than are required to refresh the capacitor. Thus, the effective duty cycle of the switching regulator is high.