SLVSFU8B January   2022  – September 2023 TPS62843

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Smart Enable and Shutdown (EN)
      2. 8.3.2 Soft Start
      3. 8.3.3 VSET Pin: Output Voltage Selection
      4. 8.3.4 Undervoltage Lockout (UVLO)
      5. 8.3.5 Switch Current Limit, Short-Circuit Protection
      6. 8.3.6 Thermal Shutdown
      7. 8.3.7 Output Voltage Discharge
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Save Mode Operation
      2. 8.4.2 100% Mode Operation
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YKA|6
  • DRL|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

The pinout of TPS62843 has been optimized to enable a single top layer PCB routing of the IC and its critical passive components such as CIN, COUT, and L. Furthermore, this pinout allows the user to connect tiny components such as 0201 (0603) size capacitors and 0402 (1005) size inductors. A solution size smaller than 5 mm2 can be achieved with a fixed output voltage. As for all switching power supplies, the layout is an important step in the design. Care must be taken in board layout to get the specified performance. Providing a low inductance, low impedance ground path is critical. Therefore, use wide and short traces for the main current paths. Place the input capacitor as close as possible to the VIN of the IC and GND pins. This placement is the most critical component placement. The VOS line is a sensitive, high impedance line and must be connected to the output capacitor and routed away from noisy components and traces (for example, the SW line) or other noise sources.