SLUSEA4D June   2021  – August 2022 TPS62932 , TPS62933 , TPS62933F , TPS62933O , TPS62933P

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Fixed Frequency Peak Current Mode
      2. 9.3.2  Pulse Frequency Modulation
      3. 9.3.3  Voltage Reference
      4. 9.3.4  Output Voltage Setting
      5. 9.3.5  Switching Frequency Selection
      6. 9.3.6  Enable and Adjusting Undervoltage Lockout
      7. 9.3.7  External Soft Start and Prebiased Soft Start
      8. 9.3.8  Power Good
      9. 9.3.9  Minimum On Time, Minimum Off Time, and Frequency Foldback
      10. 9.3.10 Frequency Spread Spectrum
      11. 9.3.11 Overvoltage Protection
      12. 9.3.12 Overcurrent and Undervoltage Protection
      13. 9.3.13 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Modes Overview
      2. 9.4.2 Heavy Load Operation
      3. 9.4.3 Light Load Operation
      4. 9.4.4 Out of Audio Operation
      5. 9.4.5 Forced Continuous Conduction Operation
      6. 9.4.6 Dropout Operation
      7. 9.4.7 Minimum On-Time Operation
      8. 9.4.8 Shutdown Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1  Custom Design With WEBENCH® Tools
        2. 10.2.2.2  Output Voltage Resistors Selection
        3. 10.2.2.3  Choosing Switching Frequency
        4. 10.2.2.4  Soft-Start Capacitor Selection
        5. 10.2.2.5  Bootstrap Capacitor Selection
        6. 10.2.2.6  Undervoltage Lockout Setpoint
        7. 10.2.2.7  Output Inductor Selection
        8. 10.2.2.8  Output Capacitor Selection
        9. 10.2.2.9  Input Capacitor Selection
        10. 10.2.2.10 Feedforward Capacitor CFF Selection
        11. 10.2.2.11 Maximum Ambient Temperature
      3. 10.2.3 Application Curves
    3. 10.3 What to Do and What Not to Do
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
      2. 13.1.2 Development Support
        1. 13.1.2.1 Custom Design With WEBENCH® Tools
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Enable and Adjusting Undervoltage Lockout

The EN pin provides electrical ON and OFF control of the device. When the EN pin voltage exceeds the enable threshold voltage, VEN_RISE, the TPS6293x begins operation. If the EN pin voltage is pulled below the disable threshold voltage, VEN_FALL, the converter stops switching and enters shutdown mode.

The EN pin has an internal pullup current source, which allows the user to float the EN pin to enable the device. If an application requires control of the EN pin, use an open-drain or open-collector or GPIO output logic to interface with the pin.

The TPS6293x implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN_UVLO threshold. The internal VIN_UVLO threshold has a hysteresis of typical 300 mV. If an application requires a higher UVLO threshold on the VIN pin, the EN pin can be configured as shown in Figure 9-4. When using the external UVLO function, setting the hysteresis at a value greater than 500 mV is recommended.

The EN pin has a small pullup current, Ip, which sets the default state of the EN pin to enable when no external components are connected. The pullup hysteresis current, Ih, is used to control the hysteresis voltage for the UVLO function when the EN pin voltage crosses the enable threshold. Use Equation 3 and Equation 4 to calculate the values of R1 and R2 for a specified UVLO threshold. Once R1 and R2 are settled down, VEN can be calculated by Equation 5, which must be lower than 5.5 V with the maximum VIN.

GUID-47692664-3DF0-4BBD-9997-0F11892D633F-low.gifFigure 9-4 Adjustable VIN Undervoltage Lockout
Equation 3.
Equation 4. GUID-20210110-CA0I-HLZG-9D5N-TGS5DBNL0XVR-low.gif
Equation 5. GUID-20210110-CA0I-7KPJ-XLJP-HDDTFSQFRWCD-low.gif

where

  • Ip is 0.7 µA.
  • Ih is 1.4 µA.
  • VEN_FALL is 1.17 V.
  • VEN_RISE is 1.21 V.
  • VSTART is the input voltage enabling the device.
  • VSTOP is the input voltage disabling the device.