SBVS277C July   2019  – September 2022 TPS7A02

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Excellent Transient Response
      2. 7.3.2 Active Discharge (P-Version Only)
      3. 7.3.3 Low IQ in Dropout
      4. 7.3.4 Smart Enable
      5. 7.3.5 Dropout Voltage
      6. 7.3.6 Foldback Current Limit
      7. 7.3.7 Undervoltage Lockout (UVLO)
      8. 7.3.8 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Functional Mode Comparison
      2. 7.4.2 Normal Operation
      3. 7.4.3 Dropout Operation
      4. 7.4.4 Disabled
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Recommended Capacitor Types
      2. 8.1.2 Input and Output Capacitor Requirements
      3. 8.1.3 Load Transient Response
      4. 8.1.4 Undervoltage Lockout (UVLO) Operation
      5. 8.1.5 Power Dissipation (PD)
        1. 8.1.5.1 Estimating Junction Temperature
        2. 8.1.5.2 Recommended Area for Continuous Operation
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

Figure 5-1 DQN Package,1-mm × 1-mm, 4-Pin X2SON(Top View)
Figure 5-2 DBV Package,5-Pin SOT-23(Top View)
Table 5-1 Pin Functions: DQN, DBV
PIN I/O(1) DESCRIPTION
NAME DQN DBV
EN 3 3 Input Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low or floating this pin disables the device. This pin features an internal pulldown resistor, which is disconnected when EN is driven high externally and the device has started up.
GND 2 2 Ground pin. This pin must be connected to ground on the board.
IN 4 1 Input Input pin. For best transient response and to minimize input impedance, use the recommended value or larger ceramic capacitor from IN to ground; see the Section 6.3 table. Place the input capacitor as close to the input of the device as possible.
NC 4 No connect pin. This pin is not internally connected. Connect to ground or leave floating.
OUT 1 5 Output Regulated output pin. A 0.5-µF or greater effective capacitance is required from OUT to ground for stability. For best transient response, use a 1-µF or larger ceramic capacitor from OUT to ground. Place the output capacitor as close to output of the device as possible; see the Section 6.3 table.
Thermal pad –– Connect the thermal pad to a large-area ground plane. The thermal pad is internally connect to ground.
NC = No internal connection.
Figure 5-3 YCH Package,4-Pin DSBGA, 0.35-mm Pitch(Top View)
Figure 5-4 YCH Package,4-Pin DSBGA, 0.35-mm Pitch(Bottom View)
Table 5-2 Pin Functions: YCH
PIN I/O DESCRIPTION
YCH NAME
A1 IN Input Input pin. For best transient response and to minimize input impedance, use the recommended value or larger ceramic capacitor from IN to ground; see the Section 6.3 table. Place the input capacitor as close to input of the device as possible.
A2 OUT Output Regulated output pin. A 0.5-µF or greater effective capacitance is required from OUT to ground for stability. For best transient response, use a 1-µF or larger ceramic capacitor from OUT to ground. Place the output capacitor as close to output of the device as possible; see the Section 6.3 table.
B1 EN Input Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low or floating this pin disables the device. This pin features an internal pulldown resistor, which is disconnected when EN is driven high externally and the device has started up.
B2 GND Ground pin. This pin must be connected to ground and the thermal pad.