SLVSF07E july   2021  – august 2023 TPS7H5001-SP , TPS7H5002-SP , TPS7H5003-SP , TPS7H5004-SP

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Device Options
  8. Pin Configuration and Functions
  9. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics: All Devices
    6. 8.6  Electrical Characteristics: TPS7H5001-SP
    7. 8.7  Electrical Characteristics: TPS7H5002-SP
    8. 8.8  Electrical Characteristics: TPS7H5003-SP
    9. 8.9  Electrical Characteristics: TPS7H5004-SP
    10. 8.10 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  VIN and VLDO
      2. 9.3.2  Start-Up
      3. 9.3.3  Enable and Undervoltage Lockout (UVLO)
      4. 9.3.4  Voltage Reference
      5. 9.3.5  Error Amplifier
      6. 9.3.6  Output Voltage Programming
      7. 9.3.7  Soft Start (SS)
      8. 9.3.8  Switching Frequency and External Synchronization
        1. 9.3.8.1 Internal Oscillator Mode
        2. 9.3.8.2 External Synchronization Mode
        3. 9.3.8.3 Primary-Secondary Mode
      9. 9.3.9  Primary Switching Outputs (OUTA/OUTB)
      10. 9.3.10 Synchronous Rectifier Outputs (SRA and SRB)
      11. 9.3.11 Dead Time and Leading Edge Blank Time Programmability (PS, SP, and LEB)
      12. 9.3.12 Pulse Skipping
      13. 9.3.13 Duty Cycle Programmability
      14. 9.3.14 Current Sense and PWM Generation (CS_ILIM)
      15. 9.3.15 Hiccup Mode Operation (HICC)
      16. 9.3.16 External Fault Protection (FAULT)
      17. 9.3.17 Slope Compensation (RSC)
      18. 9.3.18 Frequency Compensation
      19. 9.3.19 Thermal Shutdown
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1  Switching Frequency
        2. 10.2.2.2  Output Voltage Programming Resistors
        3. 10.2.2.3  Dead Time
        4. 10.2.2.4  Leading Edge Blank Time
        5. 10.2.2.5  Soft-Start Capacitor
        6. 10.2.2.6  Transformer
        7. 10.2.2.7  Main Switching FETs
        8. 10.2.2.8  Synchronous Rectificier FETs
        9. 10.2.2.9  RCD Clamp
        10. 10.2.2.10 Output Inductor
        11. 10.2.2.11 Output Capacitance and Filter
        12. 10.2.2.12 Sense Resistor
        13. 10.2.2.13 Hiccup Capacitor
        14. 10.2.2.14 Frequency Compensation Components
        15. 10.2.2.15 Slope Compensation Resistor
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • HFT|22
  • KGD|0
  • PW|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Synchronous Rectificier FETs

The maximum voltage stress that will be seen by the synchronous rectifier switch on the secondary side can be calculated using Equation 55.

Equation 75. GUID-20210620-CA0I-BVQC-VJV3-WQRLCHHTT69F-low.svg
Equation 76. GUID-20210620-CA0I-Z31B-KRZC-0ZBJJ3B90BRZ-low.svg

Note that the maximum expected voltage is approximately 20 V, but a higher rating should be selected to allow for transient spikes. For the design, an 80-V rated GaN FET was conservatively chosen for the synchronous rectifier. The current rating should be sufficient to handle the maximum secondary current as calculated in Section 10.2.2.6. In order to reduce the current through GaN FET during the soft-start period, when the controller SRA and SRB signals are off, a Schottky diode can be used in parallel with the synchronous rectifier GaN FETs. This diode would also mitigate the reverse conduction losses attributed to the GaN FET during the dead time and boost the overall efficiency of the system.