SLVSF65A December   2020  – May 2021 TPS92633-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power Supply (SUPPLY)
        1. 7.3.1.1 Power-On Reset
        2. 7.3.1.2 Supply Current in Fault Mode
      2. 7.3.2  Enable and Shutdown (EN)
      3. 7.3.3  Reference Current (IREF)
      4. 7.3.4  Constant-Current Output and Setting (INx)
      5. 7.3.5  Analog Current Control (ICTRL)
        1. 7.3.5.1 Off-Board Brightness Binning Resistor
        2. 7.3.5.2 NTC Resistor
      6. 7.3.6  Thermal Sharing Resistor (OUTx and RESx)
      7. 7.3.7  PWM Control (PWMx)
      8. 7.3.8  Supply Control
      9. 7.3.9  Diagnostics
        1. 7.3.9.1 IREF Short-to-GND Detection
        2. 7.3.9.2 IREF Open Detection
        3. 7.3.9.3 LED Short-to-GND Detection
        4. 7.3.9.4 LED Open-Circuit Detection
        5. 7.3.9.5 Single LED Short-Circuit Detection (SLS_REF)
        6. 7.3.9.6 LED Open-Circuit and Single LED Short-Circuit Detection Enable (DIAGEN)
        7. 7.3.9.7 Low Dropout Operation
        8. 7.3.9.8 Over-Temperature Protection
      10. 7.3.10 FAULT Bus Output With One-Fails–All-Fail
      11. 7.3.11 FAULT Table
      12. 7.3.12 LED Fault Summary
      13. 7.3.13 IO Pins Inner Connection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)
      2. 7.4.2 Normal Operation V(SUPPLY) ≥ 4.5 V
      3. 7.4.3 Low-Voltage Dropout Operation
      4. 7.4.4 Fault Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 BCM Controlled Rear Lamp with One-Fails-All-Fail Setup
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Independent PWM Controlled Rear Lamp with Off Board LED and Binning Resistor
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Timing Requirements

MIN NOM MAX UNIT
t(PWM_delay_rising) PWM rising edge delay, VIH(PWM) voltage to 10% of output when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t1 as shown in Figure 7-5 3 µs
PWM rising edge delay, VIH(PWM) voltage to 10% of output when V(SUPPLY) = 12 V, V(OUT) = 6V, V(CS_REG) = 50 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t1 as shown in Figure 7-5 4 µs
t(Current_rising) Output current rising from 10% to 90% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t2 as shown in Figure 7-5 2 µs
Output current rising from 10% to 90% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 50 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t2 as shown in Figure 7-5 2.5 µs
t(PWM_delay_falling) PWM falling edge delay, VIL(PWM) voltage to 90% of output current when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t3 as shown in Figure 7-5 2.4 µs
PWM falling edge delay, VIL(PWM) voltage to 90% of output current when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 50 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t3 as shown in Figure 7-5 2.6 µs
t(Current_falling) Output current falling from 90% to 10% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t4 as shown in Figure 7-5 5 µs
Output current falling from 90% to 10% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 50 mV, R(SNSx) = 0.665Ω and R(RESx) = 56 Ω, t4 as shown in Figure 7-5 1 µs
t(STARTUP) SUPPLY rising edge to 10% output current when C(IREF) = C(ICTRL)= 10 pF, V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 Ω and R(RESx) = 56 Ω, t5 as shown in Figure 7-5 85 µs
t(IREF_deg) IREF pin open and short to GND detection deglitch time 125 µs
t(OPEN_deg) LED-open fault-deglitch time, t7 as shown in Figure 7-8 125 µs
t(SG_deg) Output short-to-ground detection deglitch time, t8 as shown in Figure 7-7 125 µs
t(Recover_deg) Open and Short fault recovery deglitch time, t10 as shown in Figure 7-8 and Figure 7-7 125 µs
t(SLS_deg) Single LED short-circuit detection deglitch time, t9 as shown in Figure 7-10 135 µs
t(SLS_retry_interval) Single LED short-circuit failure retry interval time, t11 as shown in Figure 7-10 10000 µs
t(SLS_retry_period) Single LED short-circuit failure retry period time, t12 as shown in Figure 7-10 300 µs
t(SLS_retry_deg) Single LED short-circuit failure retry deglitch time, t13 as shown in Figure 7-10 50 µs
t(FAULT_recovery) Fault recovery delay time, t14 as shown in Figure 7-8Figure 7-7 and Figure 7-10 50 µs
t(TSD_deg) Thermal over temperature deglitch time 50 µs