DLPS039F December   2015  – April 2019 TPS99000-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Typical Standalone System
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions - Initialization, Clock, and Diagnostics
    2.     Pin Functions - Power and Ground
    3.     Pin Functions - Power Supply Management
    4.     Pin Functions - Illumination Control
    5.     Pin Functions - Serial Peripheral Interfaces
    6.     Pin Functions - Analog to Digital Converter
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Transimpedance Amplifier Parameters
    6. 6.6  Electrical Characteristics - Digital to Analog Converters
    7. 6.7  Electrical Characteristics - Analog to Digital Converter
    8. 6.8  Electrical Characteristics - FET Gate Drivers
    9. 6.9  Electrical Characteristics - Photo Comparator
    10. 6.10 Electrical Characteristics - Voltage Regulators
    11. 6.11 Electrical Characteristics - Temperature and Voltage Monitors
    12. 6.12 Electrical Characteristics - Current Consumption
    13. 6.13 Power-Up Timing Requirements
    14. 6.14 Power-Down Timing Requirements
    15. 6.15 Timing Requirements - Sequencer Clock
    16. 6.16 Timing Requirements - Host / Diagnostic Port SPI Interface
    17. 6.17 Timing Requirements - ADC Interface
    18. 6.18 Switching Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Illumination Control
        1. 7.3.1.1 Illumination System High Dynamic Range Dimming Overview
        2. 7.3.1.2 Illumination Control Loop
        3. 7.3.1.3 Continuous Mode Operation
          1. 7.3.1.3.1 Output Capacitance in Continuous Mode
          2. 7.3.1.3.2 Continuous Mode Driver Distortion and Blanking Current
          3. 7.3.1.3.3 Continuous Mode S_EN2 Dissipative Load Shunt Options
          4. 7.3.1.3.4 Continuous Mode Constant OFF Time
          5. 7.3.1.3.5 Continuous Mode Current Limit
        4. 7.3.1.4 Discontinuous Mode Operation
          1. 7.3.1.4.1 Discontinuous Mode Pulse Width Limit
          2. 7.3.1.4.2 COMPOUT_LOW Timer in Discontinuous Operation
          3. 7.3.1.4.3 Dimming Within Discontinuous Operation Range
          4. 7.3.1.4.4 Multiple Pulse Heights to Increase Bit Depth
          5. 7.3.1.4.5 TIA Gain Adjustment
          6. 7.3.1.4.6 Current Limit in Discontinuous Mode
          7. 7.3.1.4.7 CMODE Big Cap Mode in Discontinuous Operation
      2. 7.3.2 Over-Brightness Detection
        1. 7.3.2.1 Photo Feedback Monitor BIST
        2. 7.3.2.2 Excessive Brightness BIST
      3. 7.3.3 Analog to Digital Converter
        1. 7.3.3.1 Analog to Digital Converter Input Table
      4. 7.3.4 Power Sequencing and Monitoring
        1. 7.3.4.1 Power Monitoring
      5. 7.3.5 DMD Mirror Voltage Regulator
      6. 7.3.6 Low Dropout Regulators
      7. 7.3.7 System Monitoring Features
        1. 7.3.7.1 Windowed Watchdog Circuits
        2. 7.3.7.2 Die Temperature Monitors
        3. 7.3.7.3 External Clock Ratio Monitor
      8. 7.3.8 Communication Ports
        1. 7.3.8.1 Serial Peripheral Interface (SPI)
    4. 7.4 Device Functional Modes
      1. 7.4.1 OFF
      2. 7.4.2 STANDBY
      3. 7.4.3 POWERING_DMD
      4. 7.4.4 DISPLAY_RDY
      5. 7.4.5 DISPLAY_ON
      6. 7.4.6 PARKING
      7. 7.4.7 SHUTDOWN
    5. 7.5 Register Maps
      1. 7.5.1 System Status Registers
      2. 7.5.2 ADC Control
      3. 7.5.3 General Fault Status
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 HUD
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Application Design Considerations
          1. 8.2.1.2.1 Photodiode Considerations
          2. 8.2.1.2.2 LED Current Measurement
          3. 8.2.1.2.3 Setting the Current Limit
          4. 8.2.1.2.4 Input Voltage Variation Impact
          5. 8.2.1.2.5 Discontinuous Mode Photo Feedback Considerations
          6. 8.2.1.2.6 Transimpedance Amplifiers (TIAs, Usage, Offset, Dark Current, Ranges, RGB Trim)
      2. 8.2.2 Headlight
        1. 8.2.2.1 Design Requirements
  9. Power Supply Recommendations
    1. 9.1 TPS99000-Q1 Power Supply Architecture
    2. 9.2 TPS99000-Q1 Power Outputs
    3. 9.3 Power Supply Architecture
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power/High Current Signals
      2. 10.1.2 Sensitive Analog Signals
      3. 10.1.3 High Speed Digital Signals
      4. 10.1.4 High Power Current Loops
      5. 10.1.5 Kelvin Sensing Connections
      6. 10.1.6 Ground Separation
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Tape and Reel Information
      2. 12.1.2 Mechanical Drawings

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Illumination Control Loop

Figure 7 shows the illumination control loop. This loop consists of the following features:

  • An external buck controller (LM3409) and related discrete components which control the main LED drive PFET and controls and limits peak current using a high side sense circuit. This circuit creates a controlled current source that drives the LED high side connection (LED_ANODE).
  • A 10-bit peak current limit (ILIM) adjustment DAC included in the TPS99000-Q1.
  • Synchronization logic for external LED drive buck. SYNC pin to override the controlled off time pin of external device, and DRV_EN to control enable of external device.
  • High speed comparator, used to compare photo feedback signal to programmable reference.
  • 12-bit photo feedback comparison DAC. Sets reference for LED light pulse peak threshold in both continuous and discontinuous operating modes.
  • A high speed, low noise, wide dynamic range transimpedance amplifier (TIA1) used for real time photo feedback. Includes support for 0.75 V to 288 V/mA gains, with 14 discrete gain steps and additional RGB specific trim of 1.0 to 0.2 gain. (Two TIAs included. TIA1 is dedicated to illumination control function).
  • Negative LDO for cost effective reverse bias of photodiodes.
  • 12-bit ADC, with differential input dedicated to low side current measurements.
  • External FET gate drivers for RGB channel selection and two shunt path selections. Shunt paths provide a conduction path around the LEDs. These paths are used to control inductor current while LEDs are not emitting light. Control logic and firmware establishes appropriate current levels in inductor prior to enabling of LED during gaps between light pulses.

TPS99000-Q1 illumination_ctrl_loop_DLPS039.gifFigure 7. Illumination Control Loop