SLVSFQ9A August   2021  – November 2021 TPSM8A28 , TPSM8A29

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Internal VCC LDO and Using External Bias on VCC Pin
      2. 7.3.2  Enable
      3. 7.3.3  Output Voltage Setting
        1. 7.3.3.1 Remote Sense
      4. 7.3.4  Internal Fixed Soft Start and External Adjustable Soft Start
      5. 7.3.5  External REFIN for Output Voltage Tracking
      6. 7.3.6  Frequency and Operation Mode Selection
      7. 7.3.7  D-CAP3™ Control
      8. 7.3.8  Low-Side FET Zero-Crossing
      9. 7.3.9  Current Sense and Positive Overcurrent Protection
      10. 7.3.10 Low-Side FET Negative Current Limit
      11. 7.3.11 Power Good
      12. 7.3.12 Overvoltage and Undervoltage Protection
      13. 7.3.13 Out-Of-Bounds (OOB) Operation
      14. 7.3.14 Output Voltage Discharge
      15. 7.3.15 UVLO Protection
      16. 7.3.16 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Auto-Skip Eco-Mode Light Load Operation
      2. 7.4.2 Forced Continuous-Conduction Mode
      3. 7.4.3 Powering the Device From a 12-V Bus
      4. 7.4.4 Powering the Device From a 5.0-V Bus
      5. 7.4.5 Powering the Device From a Split-Rail Configuration
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Output Voltage Setting Point
        2. 8.2.2.2  Choose the Inductor
        3. 8.2.2.3  Set the Current Limit (TRIP)
        4. 8.2.2.4  Choose the Output Capacitor
        5. 8.2.2.5  Choose the Input Capacitors (CIN)
        6. 8.2.2.6  Soft-Start Capacitor (SS/REFIN Pin)
        7. 8.2.2.7  EN Pin Resistor Divider
        8. 8.2.2.8  VCC Bypass Capacitor
        9. 8.2.2.9  BOOT Capacitor
        10. 8.2.2.10 PGOOD Pullup Resistor
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Thermal Performance on the TI EVM
    3. 10.3 EMI
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Internal VCC LDO and Using External Bias on VCC Pin

The TPSM8A28 and TPSM8A29 power modules have internal 4.5-V LDO that takes input from VIN rail and output to VCC. When the VIN voltage rises above the VINUVLO rising threshold, and the EN voltage rises above the enable threshold (typically 1.22 V), the internal LDO is enabled and starts regulating output voltage on the VCC pin. The VCC voltage provides the bias voltage for the internal analog circuitry and also provides the supply voltage for the gate drives.

The VCC pin has an internal bypass capacitor integrated inside the module and does not require external bypassing. An external bias that is above the output voltage of the internal LDO can override the internal LDO. This enhances the efficiency of the converter because the VCC current now runs off this external bias instead of the internal linear regulator.

The VCC UVLO circuit monitors the VCC pin voltage and disables the whole converter when VCC falls below the VCC UVLO falling threshold. Maintaining a stable and clean VCC voltage is required for a smooth operation of the device.

The following are considerations when using an external bias on the VCC pin:

  • When the external bias is applied on the VCC pin early enough (for example, before EN signal comes in), the internal LDO is always forced off and the internal analog circuits has a stable power supply rail at their power enable.
  • (Not recommended) If the external bias is applied on the VCC pin late (for example, after EN signal comes in), any power-up and power-down sequencing can be applied as long as there is no excess current pulled out of the VCC pin. It is important to understand that an external discharge path on the VCC pin, which can pull a current higher than the current limit of the internal LDO from the VCC pin, can potentially turn off VCC LDO thereby shutting down the converter output.
  • A good power-up sequence is when at least the VIN UVLO rising threshold or EN rising threshold is satisfied later than the VCC UVLO rising threshold. For example, VIN applied first, then the external bias applied, and then EN signal goes high.