SLOS787J May   2012  – March 2020 TRF7964A

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Characteristics
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Signal Descriptions
      1. Table 4-1 Terminal Functions
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Electrical Characteristics
    5. 5.5 Thermal Resistance Characteristics
    6. 5.6 Switching Characteristics
  6. 6Detailed Description
    1. 6.1  Overview
      1. 6.1.1 RFID – Reader and Writer
    2. 6.2  System Block Diagram
    3. 6.3  Power Supplies
      1. 6.3.1 Supply Arrangements
      2. 6.3.2 Supply Regulator Settings
      3. 6.3.3 Power Modes
    4. 6.4  Receiver – Analog Section
      1. 6.4.1 Main and Auxiliary Receivers
      2. 6.4.2 Receiver Gain and Filter Stages
    5. 6.5  Receiver – Digital Section
      1. 6.5.1 Received Signal Strength Indicator (RSSI)
        1. 6.5.1.1 Internal RSSI – Main and Auxiliary Receivers
        2. 6.5.1.2 External RSSI
    6. 6.6  Oscillator Section
    7. 6.7  Transmitter – Analog Section
    8. 6.8  Transmitter – Digital Section
    9. 6.9  Transmitter – External Power Amplifier and Subcarrier Detector
    10. 6.10 TRF7964A IC Communication Interface
      1. 6.10.1 General Introduction
        1. 6.10.1.1 Continuous Address Mode
        2. 6.10.1.2 Noncontinuous Address Mode (Single Address Mode)
        3. 6.10.1.3 Direct Command Mode
        4. 6.10.1.4 FIFO Operation
      2. 6.10.2 Parallel Interface Mode
      3. 6.10.3 Reception of Air Interface Data
      4. 6.10.4 Data Transmission From MCU to TRF7964A
      5. 6.10.5 Serial Interface Communication (SPI)
        1. 6.10.5.1 Serial Interface Mode With Slave Select (SS)
      6. 6.10.6 Direct Mode
    11. 6.11 TRF7964A Initialization
    12. 6.12 Special Direct Mode for Improved MIFARE Compatibility
    13. 6.13 Direct Commands from MCU to Reader
      1. 6.13.1 Command Codes
        1. 6.13.1.1  Idle (0x00)
        2. 6.13.1.2  Software Initialization (0x03)
        3. 6.13.1.3  Reset FIFO (0x0F)
        4. 6.13.1.4  Transmission With CRC (0x11)
        5. 6.13.1.5  Transmission Without CRC (0x10)
        6. 6.13.1.6  Delayed Transmission With CRC (0x13)
        7. 6.13.1.7  Delayed Transmission Without CRC (0x12)
        8. 6.13.1.8  Transmit Next Time Slot (0x14)
        9. 6.13.1.9  Block Receiver (0x16)
        10. 6.13.1.10 Enable Receiver (0x17)
        11. 6.13.1.11 Test Internal RF (RSSI at RX Input With TX ON) (0x18)
        12. 6.13.1.12 Test External RF (RSSI at RX Input with TX OFF) (0x19)
    14. 6.14 Register Description
      1. 6.14.1 Register Preset
      2. 6.14.2 Register Overview
      3. 6.14.3 Detailed Register Description
        1. 6.14.3.1 Main Configuration Registers
          1. 6.14.3.1.1 Chip Status Control Register (0x00)
          2. 6.14.3.1.2 ISO Control Register (0x01)
        2. 6.14.3.2 Control Registers – Sublevel Configuration Registers
          1. 6.14.3.2.1  ISO/IEC 14443 TX Options Register (0x02)
          2. 6.14.3.2.2  ISO/IEC 14443 High-Bit-Rate and Parity Options Register (0x03)
          3. 6.14.3.2.3  TX Timer High Byte Control Register (0x04)
          4. 6.14.3.2.4  TX Timer Low Byte Control Register (0x05)
          5. 6.14.3.2.5  TX Pulse Length Control Register (0x06)
          6. 6.14.3.2.6  RX No Response Wait Time Register (0x07)
          7. 6.14.3.2.7  RX Wait Time Register (0x08)
          8. 6.14.3.2.8  Modulator and SYS_CLK Control Register (0x09)
          9. 6.14.3.2.9  RX Special Setting Register (0x0A)
          10. 6.14.3.2.10 Regulator and I/O Control Register (0x0B)
        3. 6.14.3.3 Status Registers
          1. 6.14.3.3.1 IRQ Status Register (0x0C)
          2. 6.14.3.3.2 Interrupt Mask Register (0x0D) and Collision Position Register (0x0E)
          3. 6.14.3.3.3 RSSI Levels and Oscillator Status Register (0x0F)
          4. 6.14.3.3.4 Special Functions Register (0x10)
          5. 6.14.3.3.5 Special Functions Register (0x11)
          6. 6.14.3.3.6 Adjustable FIFO IRQ Levels Register (0x14)
        4. 6.14.3.4 Test Registers
          1. 6.14.3.4.1 Test Register (0x1A)
          2. 6.14.3.4.2 Test Register (0x1B)
        5. 6.14.3.5 FIFO Control Registers
          1. 6.14.3.5.1 FIFO Status Register (0x1C)
          2. 6.14.3.5.2 TX Length Byte1 Register (0x1D), TX Length Byte2 Register (0x1E)
  7. 7Applications, Implementation, and Layout
    1. 7.1 TRF7964A Reader System Using SPI With SS Mode
      1. 7.1.1 General Application Considerations
      2. 7.1.2 Schematic
    2. 7.2 Layout Considerations
    3. 7.3 Impedance Matching TX_Out (Pin 5) to 50 Ω
    4. 7.4 Reader Antenna Design Guidelines
  8. 8Device and Documentation Support
    1. 8.1 Getting Started and Next Steps
    2. 8.2 Device Nomenclature
    3. 8.3 Tools and Software
    4. 8.4 Documentation Support
    5. 8.5 Support Resources
    6. 8.6 Trademarks
    7. 8.7 Electrostatic Discharge Caution
    8. 8.8 Glossary
  9. 9Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of devices. Each commercial family member has one of three prefixes: x, p, or no prefix. These prefixes represent evolutionary stages of product development from engineering prototypes (with prefix x) through fully qualified production devices (with no prefix).

Device development evolutionary flow:

xTRF... – Experimental device that is not necessarily representative of the electrical specifications of the final device

pTRF... – Final device that conforms to the electrical specifications of the final product but has not completed quality and reliability verification

TRF... – Fully qualified production device

Devices with a prefix of x or p are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type and, optionally, the temperature range. Figure 8-1 provides a legend for reading the complete device name.

TRF7964A device_nomenclature_TRF7964A.gifFigure 8-1 Device Nomenclature