SLUSDE1D November   2018  – February 2021 UCC21540 , UCC21540A , UCC21541 , UCC21542

PRODMIX  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     UCC21540, UCC21541 Pin Functions
    2.     UCC21542 Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications
    7. 7.7  Safety-Related Certifications
    8. 7.8  Safety-Limiting Values
    9. 7.9  Electrical Characteristics
    10. 7.10 Switching Characteristics
    11. 7.11 Insulation Characteristics Curves
    12. 7.12 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Minimum Pulses
    2. 8.2 Propagation Delay and Pulse Width Distortion
    3. 8.3 Rising and Falling Time
    4. 8.4 Input and Disable Response Time
    5. 8.5 Programmable Dead Time
    6. 8.6 Power-up UVLO Delay to OUTPUT
    7. 8.7 CMTI Testing
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO)
      2. 9.3.2 Input and Output Logic Table
      3. 9.3.3 Input Stage
      4. 9.3.4 Output Stage
      5. 9.3.5 Diode Structure in the UCC2154x
    4. 9.4 Device Functional Modes
      1. 9.4.1 Disable Pin
      2. 9.4.2 Programmable Dead Time (DT) Pin
        1. 9.4.2.1 DT Pin Tied to VCCI
        2. 9.4.2.2 Connecting a Programming Resistor between DT and GND Pins
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Designing INA/INB Input Filter
        2. 10.2.2.2 Select Dead Time Resistor and Capacitor
        3. 10.2.2.3 Select External Bootstrap Diode and its Series Resistor
        4. 10.2.2.4 Gate Driver Output Resistor
        5. 10.2.2.5 Gate to Source Resistor Selection
        6. 10.2.2.6 Estimating Gate Driver Power Loss
        7. 10.2.2.7 Estimating Junction Temperature
        8. 10.2.2.8 Selecting VCCI, VDDA/B Capacitor
          1. 10.2.2.8.1 Selecting a VCCI Capacitor
          2. 10.2.2.8.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 10.2.2.8.3 Select a VDDB Capacitor
        9. 10.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Component Placement Considerations
      2. 12.1.2 Grounding Considerations
      3. 12.1.3 High-Voltage Considerations
      4. 12.1.4 Thermal Considerations
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DWK|14
  • DW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Component Placement Considerations

  • Low-ESR and low-ESL capacitors must be connected close to the device between the VCCI and GND pins and between the VDD and VSS pins to support high peak currents when turning on the external power transistor.
  • To avoid large negative transients on the switch node VSSA (HS) pin in bridge configurations, the parasitic inductances between the source of the top transistor and the source of the bottom transistor must be minimized.
  • To improve noise immunity when driving the DIS pin from a distant micro-controller or high impedance source, TI recommends adding a small bypass capacitor, ≥ 1000 pF, between the DIS pin and GND.
  • If the dead time feature is used, TI recommends placing the programming resistor RDT and bypassing capacitor close to the DT pin of the UCC2154x to prevent noise from unintentionally coupling to the internal dead time circuit. The capacitor should be ≥ 2.2 nF.