SLUSEM3B March   2022  – January 2023 UCC21737-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety Limiting Values
    8. 6.8  Electrical Characteristics
    9. 6.9  Switching Characteristics
    10. 6.10 Insulation Characteristics Curves
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Propagation Delay
      1. 7.1.1 Regular Turn-OFF
    2. 7.2 Input Deglitch Filter
    3. 7.3 Active Miller Clamp
      1. 7.3.1 External Active Miller Clamp
    4. 7.4 Undervoltage Lockout (UVLO)
      1. 7.4.1 VCC UVLO
      2. 7.4.2 VDD UVLO
      3. 7.4.3 VEE UVLO
    5. 7.5 Overcurrent (OC) Protection
      1. 7.5.1 OC Protection with Soft Turn-OFF
    6. 7.6 ASC Support
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power Supply
      2. 8.3.2  Driver Stage
      3. 8.3.3  VCC, VDD, and VEE Undervoltage Lockout (UVLO)
      4. 8.3.4  Active Pulldown
      5. 8.3.5  Short Circuit Clamping
      6. 8.3.6  External Active Miller Clamp
      7. 8.3.7  Overcurrent and Short Circuit Protection
      8. 8.3.8  Soft Turn-off
      9. 8.3.9  Fault (FLT), Reset, and Enable (RST/EN)
      10. 8.3.10 ASC Support and APWM Monitor
    4. 8.4 Device Functional Modes
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Filters for IN+, IN-, and RST/EN
        2. 9.2.2.2 PWM Interlock of IN+ and IN-
        3. 9.2.2.3 FLT, RDY, and RST/EN Pin Circuitry
        4. 9.2.2.4 RST/EN Pin Control
        5. 9.2.2.5 Turnon and Turnoff Gate Resistors
        6. 9.2.2.6 External Active Miller Clamp
        7. 9.2.2.7 Overcurrent and Short Circuit Protection
          1. 9.2.2.7.1 Protection Based on Power Modules with Integrated SenseFET
          2. 9.2.2.7.2 Protection Based on Desaturation Circuit
          3. 9.2.2.7.3 Protection Based on Shunt Resistor in Power Loop
        8. 9.2.2.8 Higher Output Current Using an External Current Buffer
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

GUID-4BE789F4-282F-45D5-9EB4-1BA0A93CAE49-low.gif Figure 5-1 UCC21737-Q1DW SOIC (16)Top View
Table 5-1 Pin Functions
PIN I/O(1) DESCRIPTION
NAME NO.
ASC 1 I Active high to enable active short circuit function to force output high during system failure events. Tie to COM if unused.
OC 2 I Overcurrent detection pin for SenseFET, DESAT, and shunt resistor sensing. Tie to COM if unused.
COM 3 P Common ground reference. Connect to emitter pin for IGBT and source pin for SiC-MOSFET
OUTH 4 O Gate driver output pull up
VDD 5 P Positive supply rail for gate drive voltage. Bypass with a >10-μF capacitor to COM to support specified gate driver source peak current capability. Place decoupling capacitor close to the pin.
OUTL 6 O Gate driver output pull down
CLMPE 7 O External active Miller clamp control. Connect this pin to the gate of the external Miller clamp MOSFET. Leave floating if unused.
VEE 8 P Negative supply rail for gate drive voltage. Bypass with a >10-μF capacitor to COM to support specified gate driver sink peak current capability. Place decoupling capacitor close to the pin.
GND 9 P Input power supply and logic ground reference
IN+ 10 I Noninverting gate driver control input. Tie to VCC if unused.
IN– 11 I Inverting gate driver control input. Tie to GND if unused.
RDY 12 O Power good for VCC-GND, VDD-COM, and VEE-COM. RDY is open drain configuration and can be paralleled with other RDY signals.
FLT 13 O Active low fault alarm output upon overcurrent or short circuit. FLT is in open drain configuration and can be paralleled with other faults.
RST/EN 14 I The RST/EN serves two purposes:
1) Enable or shutdown the output side. The FET is turned off by a regular turn-off if EN is set to low;
2) Resets the OC condition signaled on FLT pin if RST/EN is set to low for more than 1000 ns. A reset of signal FLT is asserted at the rising edge of RST/EN.
For automatic reset function, this pin only serves to enable or shutdown the output side. The FET is turned off by a regular turn-off, if terminal EN is set to low. Tie to IN+ for automatic reset.
VCC 15 P Input power supply from 3 V to 5.5 V. Bypass with a >1-μF capacitor to GND. Place decoupling capacitor close to the pin.
APWM 16 O Isolated PWM output monitoring ASC pin status. Leave floating if unused.
P = Power, G = Ground, I = Input, O = Output