SLUSDB2A August   2018  – December 2021 UCC28951

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Dissipation Ratings
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Start-Up Protection Logic
      2. 7.3.2  Voltage Reference (VREF)
      3. 7.3.3  Error Amplifier (EA+, EA–, COMP)
      4. 7.3.4  Soft-Start and Enable (SS/EN)
      5. 7.3.5  Light-Load Power Saving Features
      6. 7.3.6  Adaptive Delay, (Delay Between OUTA and OUTB, OUTC and OUTD (DELAB, DELCD, ADEL))
      7. 7.3.7  Adaptive Delay (Delay Between OUTA and OUTF, OUTB and OUTE (DELEF, ADELEF)
      8. 7.3.8  Minimum Pulse (TMIN)
      9. 7.3.9  Burst Mode
      10. 7.3.10 Switching Frequency Setting
      11. 7.3.11 Slope Compensation (RSUM)
      12. 7.3.12 Dynamic SR ON/OFF Control (DCM Mode)
      13. 7.3.13 Current Sensing (CS)
      14. 7.3.14 Cycle-by-Cycle Current Limit Current Protection and Hiccup Mode
      15. 7.3.15 Synchronization (SYNC)
      16. 7.3.16 Outputs (OUTA, OUTB, OUTC, OUTD, OUTE, OUTF)
      17. 7.3.17 Supply Voltage (VDD)
      18. 7.3.18 Ground (GND)
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Power Loss Budget
        2. 8.2.2.2  Preliminary Transformer Calculations (T1)
        3. 8.2.2.3  QA, QB, QC, QD FET Selection
        4. 8.2.2.4  Selecting LS
        5. 8.2.2.5  Selecting Diodes DB and DC
        6. 8.2.2.6  Output Inductor Selection (LOUT)
        7. 8.2.2.7  Output Capacitance (COUT)
        8. 8.2.2.8  Select FETs QE and QF
        9. 8.2.2.9  Input Capacitance (CIN)
        10. 8.2.2.10 Current Sense Network (CT, RCS, R7, DA)
          1. 8.2.2.10.1 Voltage Loop Compensation Recommendation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

In high-power server applications to meet high-efficiency and green standards some power-supply designers have found it easier to use a phase-shifted, full-bridge converter. This is because the phase-shifted, full-bridge converter can obtain zero-voltage switching on the primary side of the converter, reducing switching losses, and EMI and increasing overall efficiency.

This is a review of the design of a 600-W, phase-shifted, full-bridge converter for one of these power systems using the UCC28951 device, which is based on typical values. In a production design, the values may need to be modified for worst-case conditions. TI has provided a MathCAD Design Tool and an Excel Design Tool to support the system designer. Both tools can be accessed in the Tools and Software tab of the UCC28951 product folder on TI.com, or can be downloaded through the following links: MathCAD Design Tool, Excel Design Tool.

Note:

The term fSW refers to the switching frequency applied to the power transformer. The output inductor experiences a switching frequency that is 2 × fSW .