SLLSER8F June   2017  – January 2019 UCC5310 , UCC5320 , UCC5350 , UCC5390

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1. 3.1 Functional Block Diagram (S, E, and M Versions)
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Function
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications for D Package
    7. 7.7  Insulation Specifications for DWV Package
    8. 7.8  Safety-Related Certifications For D Package
    9. 7.9  Safety-Related Certifications For DWV Package
    10. 7.10 Safety Limiting Values
    11. 7.11 Electrical Characteristics
    12. 7.12 Switching Characteristics
    13. 7.13 Insulation Characteristics Curves
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Propagation Delay, Inverting, and Noninverting Configuration
      1. 8.1.1 CMTI Testing
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power Supply
      2. 9.3.2 Input Stage
      3. 9.3.3 Output Stage
      4. 9.3.4 Protection Features
        1. 9.3.4.1 Undervoltage Lockout (UVLO)
        2. 9.3.4.2 Active Pulldown
        3. 9.3.4.3 Short-Circuit Clamping
        4. 9.3.4.4 Active Miller Clamp (UCC53x0M)
    4. 9.4 Device Functional Modes
      1. 9.4.1 ESD Structure
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Designing IN+ and IN– Input Filter
        2. 10.2.2.2 Gate-Driver Output Resistor
        3. 10.2.2.3 Estimate Gate-Driver Power Loss
        4. 10.2.2.4 Estimating Junction Temperature
      3. 10.2.3 Selecting VCC1 and VCC2 Capacitors
        1. 10.2.3.1 Selecting a VCC1 Capacitor
        2. 10.2.3.2 Selecting a VCC2 Capacitor
        3. 10.2.3.3 Application Circuits With Output Stage Negative Bias
      4. 10.2.4 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 PCB Material
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Certifications
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Information

The UCC53x0 is a family of simple, isolated gate drivers for power semiconductor devices, such as MOSFETs, IGBTs, or SiC MOSFETs. The family of devices is intended for use in applications such as motor control, solar inverters, switched-mode power supplies, and industrial inverters.

The UCC53x0 family of devices has three pinout configurations, featuring split outputs, Miller clamp, and UVLO with reference to GND2. The UCC5320SC, UCC5350SB, and UCC5390SC have a split output, OUTH and OUTL. The two pins can be used to separately decouple the power transistor turnon and turnoff commutations. The UCC5310MC and UCC5350MC feature active Miller clamping, which can be used to prevent false turn-on of the power transistors induced by the Miller current. The UCC5320EC and UCC5390EC offer true UVLO protection by monitoring the voltage between the VCC2 and GND2 pins to prevent the power transistors from operating in a saturation region. The UCC53x0 family of devices comes in an 8-pin D and 8-pin DWV package options and have a creepage, or clearance, of 4 mm and 8.5 mm respectively, which are suitable for applications where basic or reinforced isolation is required. Different drive strengths enable a simple driver platform to be used for applications demanding power transistors with different power ratings. Specifically, the UCC5390 device offers a 10-A minimum drive current which can help remove the external current buffer used to drive high power transistors.