SLLSER8F June   2017  – January 2019 UCC5310 , UCC5320 , UCC5350 , UCC5390

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1. 3.1 Functional Block Diagram (S, E, and M Versions)
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Function
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications for D Package
    7. 7.7  Insulation Specifications for DWV Package
    8. 7.8  Safety-Related Certifications For D Package
    9. 7.9  Safety-Related Certifications For DWV Package
    10. 7.10 Safety Limiting Values
    11. 7.11 Electrical Characteristics
    12. 7.12 Switching Characteristics
    13. 7.13 Insulation Characteristics Curves
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Propagation Delay, Inverting, and Noninverting Configuration
      1. 8.1.1 CMTI Testing
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power Supply
      2. 9.3.2 Input Stage
      3. 9.3.3 Output Stage
      4. 9.3.4 Protection Features
        1. 9.3.4.1 Undervoltage Lockout (UVLO)
        2. 9.3.4.2 Active Pulldown
        3. 9.3.4.3 Short-Circuit Clamping
        4. 9.3.4.4 Active Miller Clamp (UCC53x0M)
    4. 9.4 Device Functional Modes
      1. 9.4.1 ESD Structure
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Designing IN+ and IN– Input Filter
        2. 10.2.2.2 Gate-Driver Output Resistor
        3. 10.2.2.3 Estimate Gate-Driver Power Loss
        4. 10.2.2.4 Estimating Junction Temperature
      3. 10.2.3 Selecting VCC1 and VCC2 Capacitors
        1. 10.2.3.1 Selecting a VCC1 Capacitor
        2. 10.2.3.2 Selecting a VCC2 Capacitor
        3. 10.2.3.3 Application Circuits With Output Stage Negative Bias
      4. 10.2.4 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 PCB Material
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Certifications
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA = –40°C to +125°C, (unless otherwise noted)
UCC5310 UCC5320 UCC5350 UCC5390 D010_IOH_vs_Vo_SLLSER8.gif
CLOAD = 150 nF
Figure 5. Output-High Drive Current vs Output Voltage
UCC5310 UCC5320 UCC5350 UCC5390 D010_SLLSF39.gif
CLOAD = 150 nF
Figure 7. UCC5350SBD Output-High Drive Current vs Output Voltage
UCC5310 UCC5320 UCC5350 UCC5390 D020_I_OL_vs_Vo_SLLSER8.gif
CLOAD = 150 nF
Figure 9. Output-Low Drive Current vs Output Voltage
UCC5310 UCC5320 UCC5350 UCC5390 D046_Icc1_vs_temperature_SLLSER8.gif
IN+ = L IN– = H
Figure 11. ICC1 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D047_INP1_INN0_Icc1_vs_temperature_SLLSER8.gif
IN+ = H IN– = L
Figure 13. ICC1 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D048_Icc1_vs_Frequency_SLLSER8.gif
Duty Cycle = 50% T = 25°C
Figure 15. ICC1 Supply Current vs Input Frequency
UCC5310 UCC5320 UCC5350 UCC5390 D049_INP0_INN1_Icc2_vs_temperature_SLLSER8.gif
IN+ = L IN– = H
Figure 17. ICC2 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D050_INP1_INN0_Icc2_vs_temperature_SLLSER8.gif
IN+ = H IN– = L
Figure 19. ICC2 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D051_Icc2_vs_frequency_SLLSER8.gif
Duty Cycle = 50% T = 25°C
Figure 21. ICC2 Supply Current vs Input Frequency
UCC5310 UCC5320 UCC5350 UCC5390 D045_10A_ICC2_vs_CL_SLLSER8.gif
fSW = 1 kHz
Figure 23. ICC2 Supply Current vs Load Capacitance
UCC5310 UCC5320 UCC5350 UCC5390 D022_5350_5V_Vclamp_vs_Iclamp_SLLSER8.gif
IClamp = 0mA~20mA
Figure 25. UCC5350M VClamp vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D027_2A_rise_time_vs_temp_SLLSER8.gif
Figure 27. Rise Time vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D029_2A_fall_time_vs_temp_SLLSER8.gif
Figure 29. Fall Time Vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D031_2A_tPLH_vs_temp_SLLSER8.gif
Figure 31. Propagation Delay tPLH vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D016_SLLSF39.gif
Figure 33. UCC5350SBD Propagation Delay vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D034_10A_tPHL_vs_temp_SLLSER8.gif
Figure 35. Propagation Delay tPHL vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D039_10A_tr_vs_load_SLLSER8.gif
fSW = 1 kHz RGH = 0 Ω RGL = 0 Ω
Figure 37. Rise Time vs Load Capacitance
UCC5310 UCC5320 UCC5350 UCC5390 D013_Fall_time_vs_C_LOAD_SLLSER8.gif
fSW = 1 kHz RGH = 0 Ω RGL = 0 Ω
Figure 39. Fall Time vs Load Capacitance
UCC5310 UCC5320 UCC5350 UCC5390 D013_SLLSF39.gif
Figure 41. UCC5350SBD Fall Time vs CL and VCC2
UCC5310 UCC5320 UCC5350 UCC5390 D019_I_OH_vs_Vo_SLLSER8.gif
CLOAD = 150 nF
Figure 6. Output-High Drive Current vs Output Voltage
UCC5310 UCC5320 UCC5350 UCC5390 D011_IOL_vs_Vo_SLLSER8.gif
CLOAD = 150 nF
Figure 8. Output-Low Drive Current vs Output Voltage
UCC5310 UCC5320 UCC5350 UCC5390 D004_Icc1_vs_temperature_SLLSER8.gif
IN+ = L IN– = H
Figure 10. ICC1 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D005_Icc1_vs_temperature_SLLSER8.gif
IN+ = H IN– = L
Figure 12. ICC1 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D006_Icc1_vs_frequency_SLLSER8.gif
Duty Cycle = 50% T = 25°C
Figure 14. ICC1 Supply Current vs Input Frequency
UCC5310 UCC5320 UCC5350 UCC5390 D007_Icc2_vs_temperature_SLLSER8.gif
IN+ = L IN– = H
Figure 16. ICC2 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D008_Icc2_vs_temperature_SLLSER8.gif
IN+ = H IN– = L
Figure 18. ICC2 Supply Current vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D009_Icc2_vs_frequency_SLLSER8.gif
Duty Cycle = 50% T = 25°C
Figure 20. ICC2 Supply Current vs Input Frequency
UCC5310 UCC5320 UCC5350 UCC5390 D014_ICC2_vs_C_LOAD_SLLSER8.gif
fSW = 1 kHz
Figure 22. ICC2 Supply Current vs Load Capacitance
UCC5310 UCC5320 UCC5350 UCC5390 D025_5310_5V_Vclamp_vs_Iclamp_SLLSER8.gif
IClamp = 0mA~20mA
Figure 24. UCC5310M VClamp vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D040_Vclpth_vs_temp_SLLER8.gif
Figure 26. VClamp-TH vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D028_10A_rise_time_vs_temp_SLLSER8.gif
Figure 28. Rise Time vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D030_10A_fall_time_vs_temp_SLLSER8.gif
Figure 30. Fall Time vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D032_10A_tPLH_vs_temp_SLLSER8.gif
Figure 32. Propagation Delay tPLH vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D033_2A_tPHL_vs_temp_SLLSER8.gif
Figure 34. Propagation Delay tPHL vs Temperature
UCC5310 UCC5320 UCC5350 UCC5390 D012_Rise_time_vs_C_LOAD_SLLSER8.gif
fSW = 1 kHz RGH = 0 Ω RGL = 0 Ω
Figure 36. Rise Time vs Load Capacitance
UCC5310 UCC5320 UCC5350 UCC5390 D011_SLLSF39.gif
Figure 38. UCC5350SBD Rise Time vs CL and VCC2
UCC5310 UCC5320 UCC5350 UCC5390 D038_10A_tf_vs_load_SLLSER8.gif
fSW = 1 kHz RGH = 0 Ω RGL = 0 Ω
Figure 40. Fall Time vs Load Capacitance