SLVSDD7A September   2016  – February 2019 UCD9090A


  1. Features
  2. Applications
  3. Description
    1.     Typical Application Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C/Smbus/PMBus Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 TI Fusion GUI
      2. 7.3.2 PMBus Interface
      3. 7.3.3 Rail Configuration
    4. 7.4 Device Functional Modes
      1. 7.4.1  Power Supply Sequencing
        1. Turn-On Sequencing
        2. Turn-Off Sequencing
        3. Sequencing Configuration Options
      2. 7.4.2  Pin-Selected Rail States
      3. 7.4.3  Monitoring
        1. Voltage Monitoring
        2. Current Monitoring
        3. Remote Temperature Monitoring and Internal Temperature Sensor
        4. Temperature by Host Input
      4. 7.4.4  Fault Responses and Alert Processing
      5. 7.4.5  Shut Down All Rails and Sequence On (Resequence)
      6. 7.4.6  GPIOs
      7. 7.4.7  GPO Control
      8. 7.4.8  GPO Dependencies
        1. GPO Delays
        2. State Machine Mode Enable
      9. 7.4.9  GPI Special Functions
        1. Fault Shutdown Rails
        2. Configured as Sequencing Debug Pin
        3. Configured as Fault Pin
        4. Cold Boot Mode Enable
      10. 7.4.10 Power Supply Enables
      11. 7.4.11 Cascading Multiple Devices
      12. 7.4.12 PWM Outputs
        1. FPWM1-8
        2. PWM1-2
      13. 7.4.13 Programmable Multiphase PWMs
      14. 7.4.14 Margining
        1. Open-Loop Margining
        2. Closed-Loop Margining
      15. 7.4.15 Run Time Clock
      16. 7.4.16 System Reset Signal
      17. 7.4.17 Watch Dog Timer
      18. 7.4.18 Data and Error Logging to Flash Memory
      19. 7.4.19 Brownout Function
      20. 7.4.20 PMBus Address Selection
      21. 7.4.21 Device Reset
      22. 7.4.22 JTAG Interface
      23. 7.4.23 Internal Fault Management and Memory Error Correction (ECC)
    5. 7.5 Programming
      1. 7.5.1 Full Configuration Update While in Normal Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. Estimating ADC Reporting Accuracy
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGZ|48
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Remote Temperature Monitoring and Internal Temperature Sensor

The UCD9090A has support for internal and remote temperature sensing. The internal temperature sensor requires no calibration and can report the device temperature via the PMBus interface. The remote temperature sensor can report the remote temperature by using a configurable gain and offset for the type of sensor that is used in the application such as a linear temperature sensor (LTS) connected to the analog inputs.

External circuitry must be used in order to convert the temperature to a voltage within the range of the UCD9090A MONx input being used.

If an input is configured as a temperature, the measurements are smoothed by a sliding average digital filter. The temperature for 1 rail is measured every 100ms. If the device is programmed to support 10 rails (independent of temperature not being monitored at all rails), then each rail's temperature will get measured every 1s. The temperature calculation is done with a sliding average using the last 16 measurements. The filter reduces the probability of false fault detections, and introduces a small delay to the temperature reading. The internal device temperature is measured using a silicon diode sensor with an accuracy of ±5°C and is also monitored using the ADC. Temperature monitoring begins immediately after reset and initialization.

The device supports multiple PMBus commands related to temperature, including READ_TEMPERATURE_1, which reads the internal temperature; READ_TEMPERATURE_2, which reads external temperatures; and OT_FAULT_LIMIT and OT_WARN_LIMIT, which set the overtemperature fault and warning limit. The UCD90xxx Sequencer and System Health Controller PMBus Command Reference contains a detailed description of how temperature-fault responses are implemented using PMBus commands.

TEMPERATURE_CAL_GAIN is a PMBus command that allows the scale factor of an external temperature sensor and any amplifiers or attenuators between the temperature sensor and the MON pin to be entered by the user in °C/V. TEMPERATURE_CAL_OFFSET is the temperature that results in 0 V at the MON pin. The combination of these PMBus commands allows temperature to be reported in degrees Celsius.

UCD9090A tmp20_slvsdd7.gifFigure 14. Remote Temperature Monitoring Circuit Example Using the TMP20