JAJSNM7 December   2021 REF35

ADVANCE INFORMATION  

  1. 特長
  2. アプリケーション
  3. 説明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Solder Heat Shift
    2. 8.2 Temperature Coefficient
    3. 8.3 Long-Term Stability
    4. 8.4 Thermal Hysteresis
    5. 8.5 Noise Performance
      1. 8.5.1 Low Frequency (1/f) Noise
      2. 8.5.2 Broadband Noise
    6. 8.6 Power Dissipation
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Supply Voltage
      2. 9.3.2 EN Pin
      3. 9.3.3 NR Pin
    4. 9.4 Device Functional Modes
      1. 9.4.1 Basic Connections
      2. 9.4.2 スタートアップ
      3. 9.4.3 出力過渡動作
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application: Negative Reference Voltage
    3. 10.3 Typical Application: Precision Power Supply and Reference
      1. 10.3.1 Design Requirements
      2. 10.3.2 Detailed Design Procedure
        1. 10.3.2.1 リファレンスの選択
        2. 10.3.2.2 Input and Output Capacitors
        3. 10.3.2.3 Selection of ADC
      3. 10.3.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 サポート・リソース
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Long-Term Stability

One of the key performance parameters of the REF35 references is long-term stability also known as long-term drift. The long-term stability value is tested in a typical setup that reflects standard PCB board manufacturing practices. The boards are made of standard FR4 material and the board does not have special cuts or grooves around the devices to relieve the mechanical stress of the PCB. The devices and boards in this test do not undergo high temperature burn in post-soldering prior to testing. These conditions reflect a real world use case scenario and common manufacturing techniques.

During the long-term stability testing, precautions are taken to ensure that only the long-term stability drift is being measured. The boards are maintained at 35°C in an oil bath. The oil bath ensures that the temperature is constant across the device over time compared to an air oven. The measurements are captured every 30 minutes with a calibrated 8.5 digit multimeter.

Typical long-term stability characteristic is expressed as deviation of reference voltage output over time.

Figure 8-5 shows the typical drift value for the REF35 in SOT23-6 package is TBD ppm from 0 to 1000 hours. It is important to understand that long-term stability is not ensured by design and that the value is typical. The REF35 will experience the highest drift in the initial 1000 hr. Subsequent deviation is typically lower than first 1000 hr.

GUID-32C95F0F-ABA7-47FB-9BB6-37CAFBCDD9D2-low.gif Figure 8-5 Long Term Stability - 1000 hours (VREF)