SCES577E JUNE   2004  – November 2015 SN74AVCH4T245

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Switching Characteristics, VCCA = 1.2 V
    7. 7.7  Switching Characteristics, VCCA = 1.5 V ± 0.1 V
    8. 7.8  Switching Characteristics, VCCA = 1.8 V ± 0.15 V
    9. 7.9  Switching Characteristics, VCCA = 2.5 V ± 0.2 V
    10. 7.10 Switching Characteristics, VCCA = 3.3 V ± 0.3 V
    11. 7.11 Operating Characteristics
    12. 7.12 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range
      2. 9.3.2 Supports High Speed Translation
      3. 9.3.3 Ioff Supports Partial-Power-Down Mode Operation
      4. 9.3.4 Bus-Hold Circuitry
      5. 9.3.5 Vcc Isolation Feature
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VCCA Supply voltage –0.5 4.6 V
VCCB Supply voltage –0.5 4.6 V
VI Input voltage(2) I/O ports (A port) –0.5 4.6 V
I/O ports (B port) –0.5 4.6
Control inputs –0.5 4.6
VO Voltage applied to any output
in the high-impedance or power-off state(2)
A port –0.5 4.6 V
B port –0.5 4.6
VO Voltage applied to any output
in the high or low state(2) (3)
A port –0.5 VCCA + 0.5 V
B port –0.5 VCCB + 0.5
IIK Input clamp current VI < 0 –50 mA
IOK Output clamp current VO < 0 –50 mA
IO Continuous output current ±50 mA
Continuous current through VCCA, VCCB, or GND ±100 mA
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input voltage and output negativeVoltage ratings may be exceeded if the input and output current ratings are observed.
(3) The output positiveVoltage rating may be exceeded up to 4.6V maximum if the output current rating is observed.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±8000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model ±200
(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

see (1)(2)(3)(4)(5)
VCCI VCCO MIN MAX UNIT
VCCA Supply voltage 1.2 3.6 V
VCCB Supply voltage 1.2 3.6 V
VIH High-level
input voltage
Data inputs(4) 1.2 V to 1.95 V VCCI  × 0.65 V
1.95 V to 2.7 V 1.6
2.7 V to 3.6 V 2
VIL Low-level
input voltage
Data inputs(4) 1.2 V to 1.95 V VCCI  × 0.35 V
1.95 V to 2.7 V 0.7
2.7 V to 3.6 V 0.8
VIH High-level
input voltage
DIR
(referenced to VCCA)(5)
1.2 V to 1.95 V VCCA  × 0.65 V
1.95 V to 2.7 V 1.6
2.7 V to 3.6 V 2
VIL Low-level
input voltage
DIR
(referenced to VCCA)(5)
1.2 V to 1.95 V VCCA  × 0.35 V
1.95 V to 2.7 V 0.7
2.7 V to 3.6 V 0.8
VI Input voltage 0 3.6 V
VO Output voltage Active state 0 VCCO V
3-state 0 3.6
IOH High-level output current 1.2 V –3 mA
1.4 V to 1.6 V –6
1.65 V to 1.95 V –8
2.3 V to 2.7 V –9
3 V to 3.6 V –12
IOL Low-level output current 1.2 V 3 mA
1.4 V to 1.6 V 6
1.65 V to 1.95 V 8
2.3 V to 2.7 V 9
3 V to 3.6 V 12
Δt/Δv Input transition rise or fall rate 5 ns/V
TA Operating free-air temperature –40 85 °C
(1) VCCI is the VCC associated with the input port.
(2) VCCO is the VCC associated with the output port.
(3) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
(4) For VCCI values not specified in the data sheet, VIH min = VCCI  × 0.7 V, VIL max = VCCI  × 0.3 V.
(5) For VCCA values not specified in the data sheet, VIH min = VCCA  × 0.7 V, VIL max = VCCA  × 0.3 V.

7.4 Thermal Information

THERMAL METRIC(1) SN74AVCH4T245 UNIT
D (SOIC) DGV (TVSOP) PW (TSSOP) RGY (VQFN) RSV (UQFN)
16 PINS 16 PINS 16 PINS 16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance(2) 85.5 126.0 112.0 37.5 146.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 46.9 50.8 46.8 54.5 53.6 °C/W
RθJB Junction-to-board thermal resistance 43.0 57.7 57.1 15.6 75.6 °C/W
ψJT Junction-to-top characterization parameter 13.4 5.7 5.7 0.5 13.5 °C/W
ψJB Junction-to-board characterization parameter 42.7 57.2 56.5 15.8 75.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.5 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance with JESD 51-7.

7.5 Electrical Characteristics

All typical limits apply over TA = 25°C, and all maximum and minimum limits apply over TA = –40°C to 85°C (unless otherwise noted).(5)(6)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH IOH = –100 μA; VCCA = 1.2 V to 3.6 V; VCCB = 1.2 V to 3.6 V; VI = VIH VCCO  – 0.2 V
IOH = –3 mA; VCCA = 1.2 V; VCCB = 1.2 V; VI = VIH 0.95
IOH = –6 mA; VCCA = 1.4 V; VCCB = 1.4 V; VI = VIH 1.05
IOH = –8 mA; VCCA = 1.65 V; VCCB = 1.65 V; VI = VIH 1.2
IOH = –9 mA; VCCA = 2.3 V; VCCB = 2.3 V; VI = VIH 1.75
IOH = –12 mA; VCCA = 3 V; VCCB = 3 V; VI = VIH 2.3
VOL IOL = 100 μA; VCCA = 1.2 V to 3.6 V; VCCB = 1.2 V to 3.6 V; VI = VIL 0.2 V
IOL = 3 mA; VCCA = 1.2 V; VCCB = 1.2 V; VI = VIL 0.15
IOL = 6 mA; VCCA = 1.4 V; VCCB = 1.4 V; VI = VIL 0.35
IOL = 8 mA; VCCA = 1.65 V; VCCB = 1.65 V; VI = VIL 0.45
IOL = 9 mA; VCCA = 2.3 V; VCCB = 2.3 V; VI = VIL 0.55
IOL = 12 mA; VCCA = 3 V; VCCB = 3 V; VI = VIL 0.7
II DIR input VI = VCCA or GND; VCCA = 1.2 V to 3.6 V; VCCB = 1.2 V to 3.6 V TA = 25°C ±0.025 ±0.25 μA
TA = –40°C to 85°C ±1
IBHL (1) VI = 0.42 V; VCCA = 1.2 V; VCCB = 1.2 V 25 μA
VI = 0.49 V; VCCA = 1.4 V; VCCB = 1.4 V 15
VI = 0.58 V; VCCA = 1.65 V; VCCB = 1.65 V 25
VI = 0.7 V; VCCA = 2.3 V; VCCB = 2.3 V 45
VI = 0.8 V; VCCA = 3.3 V; VCCB = 3.3 V 100
IBHH (2) VI = 0.78 V; VCCA = 1.2 V; VCCB = 1.2 V –25 μA
VI = 0.91 V; VCCA = 1.4 V; VCCB = 1.4 V –15
VI = 1.07 V; VCCA = 1.65 V; VCCB = 1.65 V –25
VI = 1.6 V; VCCA = 2.3 V; VCCB = 2.3 V –45
VI = 2 V; VCCA = 3.3 V; VCCB = 3.3 V –100
IBHLO (3) VI = 0 to VCCI VCCA = 1.2 V; VCCB = 1.2 V 50 µA
VCCA = 1.6 V; VCCB = 1.6 V 125
VCCA = 1.95 V; VCCB = 1.95 V 200
VCCA = 2.7 V; VCCB = 2.7 V 300
VCCA = 3.6 V; VCCB = 3.6 V 500
IBHHO (4) VI = 0 to VCCI VCCA = 1.2 V; VCCB = 1.2 V –50 µA
VCCA = 1.6 V; VCCB = 1.6 V –125
VCCA = 1.95 V; VCCB = 1.95 V –200
VCCA = 2.7 V; VCCB = 2.7 V –300
VCCA = 3.6 V; VCCB = 3.6 V –500
Ioff A port VI or VO = 0 to 3.6 V; VCCA = 0 V; VCCB = 0 V to 3.6 V TA = 25°C ±0.1 ±1 µA
TA = –40°C to 85°C ±5
B port VI or VO = 0 to 3.6 V; VCCA = 0 V to 3.6 V; VCCB = 0 V TA = 25°C ±0.1 ±1
TA = –40°C to 85°C ±5
IOZ (7) A or B port VO = VCCO or GND, VI = VCCI or GND; OE = VIH; VCCA = 3.6 V; VCCB = 3.6 V TA = 25°C ±0.5 ±2.5 µA
TA = –40°C to 85°C ±5
B port VO = VCCO or GND, VI = VCCI or GND; OE = don't care; VCCA = 0 V; VCCB = 3.6 V ±5
A port VO = VCCO or GND, VI = VCCI or GND; OE = don't care; VCCA = 3.6 V; VCCB = 0 V ±5
ICCA VI = VCCI or GND, IO = 0 VCCA = 1.2 V to 3.6 VVCCB = 1.2 V to 3.6 V 8 µA
VCCA = 0 V; VCCB = 3.6 V –2
VCCA = 3.6 V; VCCB = 0 V 8
ICCB VI = VCCI or GND, IO = 0 VCCA = 1.2 V to 3.6 VVCCB = 1.2 V to 3.6 V 8 µA
VCCA = 0 V; VCCB = 3.6 V 8
VCCA = 3.6 V; VCCB = 0 V –2
ICCA + ICCB VI = VCCI or GND, IO = 0; VCCA = 1.2 V to 3.6 V; VCCB = 1.2 V to 3.6 V 16 µA
Ci Control inputs VI = 3.3 V or GND; VCCA = 3.3 V; VCCB = 3.3 V 3.5 4.5 pF
Cio A or B port VO = 3.3 V or GND; VCCA = 3.3 V; VCCB = 3.3 V 6 7 pF
(1) The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.
(2) The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.
(3) An external driver must source at least IBHLO to switch this node from low to high.
(4) An external driver must sink at least IBHHO to switch this node from high to low.
(5) VCCO is the VCC associated with the output port.
(6) VCCI is the VCC associated with the input port.
(7) For I/O ports, the parameter IOZ includes the input leakage current.

7.6 Switching Characteristics, VCCA = 1.2 V

over recommended operating free-air temperature range (for parameter descriptions, see Figure 3)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB TYP UNIT
tPLH, tPHL A B VCCB = 1.2 V 3.4 ns
VCCB = 1.5 V ± 0.1 V 2.9
VCCB = 1.8 V ± 0.15 V 2.7
VCCB = 2.5 V ± 0.2 V 2.6
VCCB = 3.3 V ± 0.3 V 2.8
tPLH, tPHL B A VCCB = 1.2 V 3.6 ns
VCCB = 1.5 V ± 0.1 V 3.1
VCCB = 1.8 V ± 0.15 V 2.8
VCCB = 2.5 V ± 0.2 V 2.6
VCCB = 3.3 V ± 0.3 V 2.6
tPZH, tPZL OE A VCCB = 1.2 V 5.6 ns
VCCB = 1.5 V ± 0.1 V 4.7
VCCB = 1.8 V ± 0.15 V 4.3
VCCB = 2.5 V ± 0.2 V 3.9
VCCB = 3.3 V ± 0.3 V 3.7
tPZH, tPZL OE B VCCB = 1.2 V 5 ns
VCCB = 1.5 V ± 0.1 V 4.3
VCCB = 1.8 V ± 0.15 V 3.9
VCCB = 2.5 V ± 0.2 V 3.6
VCCB = 3.3 V ± 0.3 V 3.6
tPHZ, tPLZ OE A VCCB = 1.2 V 6.2 ns
VCCB = 1.5 V ± 0.1 V 5.2
VCCB = 1.8 V ± 0.15 V 5.2
VCCB = 2.5 V ± 0.2 V 4.3
VCCB = 3.3 V ± 0.3 V 4.8
tPHZ, tPLZ OE B VCCB = 1.2 V 5.9 ns
VCCB = 1.5 V ± 0.1 V 5.1
VCCB = 1.8 V ± 0.15 V 5
VCCB = 2.5 V ± 0.2 V 4.7
VCCB = 3.3 V ± 0.3 V 5.5

7.7 Switching Characteristics, VCCA = 1.5 V ± 0.1 V

over recommended operating free-air temperature range (for parameter descriptions, see Figure 3)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB MIN TYP MAX UNIT
tPHL, tPLH A B VCCB = 1.2 V 3.2 ns
VCCB = 1.5 V ± 0.1 V 0.3 6.3
VCCB = 1.8 V ± 0.15 V 0.3 5.2
VCCB = 2.5 V ± 0.2 V 0.4 4.2
VCCB = 3.3 V ± 0.3 V 0.4 4.2
tPLH, tPHL B A VCCB = 1.2 V 3.3 ns
VCCB = 1.5 V ± 0.1 V 0.7 6.3
VCCB = 1.8 V ± 0.15 V 0.5 6
VCCB = 2.5 V ± 0.2 V 0.4 5.7
VCCB = 3.3 V ± 0.3 V 0.3 5.6
tPZH, tPZL OE A VCCB = 1.2 V 4.9 ns
VCCB = 1.5 V ± 0.1 V 1.4 9.6
VCCB = 1.8 V ± 0.15 V 1.1 9.5
VCCB = 2.5 V ± 0.2 V 0.7 9.4
VCCB = 3.3 V ± 0.3 V 0.4 9.4
tPZH, tPZL OE B VCCB = 1.2 V 4.5 ns
VCCB = 1.5 V ± 0.1 V 1.4 9.6
VCCB = 1.8 V ± 0.15 V 1.1 7.7
VCCB = 2.5 V ± 0.2 V 0.9 5.8
VCCB = 3.3 V ± 0.3 V 0.9 5.6
tPHZ, tPLZ OE A VCCB = 1.2 V 5.6 ns
VCCB = 1.5 V ± 0.1 V 1.8 10.2
VCCB = 1.8 V ± 0.15 V 1.5 10.2
VCCB = 2.5 V ± 0.2 V 1.3 10.2
VCCB = 3.3 V ± 0.3 V 1.6 10.2
tPHZ, tPLZ OE B VCCB = 1.2 V 5.2 ns
VCCB = 1.5 V ± 0.1 V 1.9 10.3
VCCB = 1.8 V ± 0.15 V 1.9 9.1
VCCB = 2.5 V ± 0.2 V 1.4 7.4
VCCB = 3.3 V ± 0.3 V 1.2 7.6

7.8 Switching Characteristics, VCCA = 1.8 V ± 0.15 V

over recommended operating free-air temperature range (for parameter descriptions, see Figure 3)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB MIN TYP MAX UNIT
tPLH, tPHL A B VCCB = 1.2 V 2.9 ns
VCCB = 1.5 V ± 0.1 V 0.1 6
VCCB = 1.8 V ± 0.15 V 0.1 4.9
VCCB = 2.5 V ± 0.2 V 0.1 3.9
VCCB = 3.3 V ± 0.3 V 0.3 3.9
tPLH, tPHL B A VCCB = 1.2 V 3 ns
VCCB = 1.5 V ± 0.1 V 0.6 5.3
VCCB = 1.8 V ± 0.15 V 0.5 4.9
VCCB = 2.5 V ± 0.2 V 0.3 4.6
VCCB = 3.3 V ± 0.3 V 0.3 4.5
tPZH, tPZL OE A VCCB = 1.2 V 4.4 ns
VCCB = 1.5 V ± 0.1 V 1 7.4
VCCB = 1.8 V ± 0.15 V 1 7.3
VCCB = 2.5 V ± 0.2 V 0.6 7.3
VCCB = 3.3 V ± 0.3 V 0.4 7.2
tPZH, tPZL OE B VCCB = 1.2 V 4.1 ns
VCCB = 1.5 V ± 0.1 V 1.2 9.2
VCCB = 1.8 V ± 0.15 V 1 7.4
VCCB = 2.5 V ± 0.2 V 0.8 5.3
VCCB = 3.3 V ± 0.3 V 0.8 4.6
tPHZ, tPLZ OE A VCCB = 1.2 V 5.4 ns
VCCB = 1.5 V ± 0.1 V 1.6 8.6
VCCB = 1.8 V ± 0.15 V 1.8 8.7
VCCB = 2.5 V ± 0.2 V 1.3 8.7
VCCB = 3.3 V ± 0.3 V 1.6 8.7
tPHZ, tPLZ OE B VCCB = 1.2 V 5 ns
VCCB = 1.5 V ± 0.1 V 1.7 9.9
VCCB = 1.8 V ± 0.15 V 1.6 8.7
VCCB = 2.5 V ± 0.2 V 1.2 6.9
VCCB = 3.3 V ± 0.3 V 1 6.9

7.9 Switching Characteristics, VCCA = 2.5 V ± 0.2 V

over recommended operating free-air temperature range (for parameter descriptions, see Figure 3)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB MIN TYP MAX UNIT
tPLH, tPHL A B VCCB = 1.2 V 2.8 ns
VCCB = 1.5 V ± 0.1 V 0.1 5.7
VCCB = 1.8 V ± 0.15 V 0.1 4.6
VCCB = 2.5 V ± 0.2 V 0.2 3.5
VCCB = 3.3 V ± 0.3 V 0.1 3.6
tPLH, tPHL B A VCCB = 1.2 V 2.7 ns
VCCB = 1.5 V ± 0.1 V 0.6 4.2
VCCB = 1.8 V ± 0.15 V 0.4 3.9
VCCB = 2.5 V ± 0.2 V 0.2 3.4
VCCB = 3.3 V ± 0.3 V 0.2 3.3
tPZH, tPZL OE A VCCB = 1.2 V 4 ns
VCCB = 1.5 V ± 0.1 V 0.7 6.5
VCCB = 1.8 V ± 0.15 V 0.7 5.2
VCCB = 2.5 V ± 0.2 V 0.6 4.8
VCCB = 3.3 V ± 0.3 V 0.4 4.8
tPZH, tPZL OE B VCCB = 1.2 V 3.8 ns
VCCB = 1.5 V ± 0.1 V 0.9 8.8
VCCB = 1.8 V ± 0.15 V 0.8 7
VCCB = 2.5 V ± 0.2 V 0.6 4.8
VCCB = 3.3 V ± 0.3 V 0.6 4
tPHZ, tPLZ OE A VCCB = 1.2 V 4.7 ns
VCCB = 1.5 V ± 0.1 V 1 8.4
VCCB = 1.8 V ± 0.15 V 1 8.4
VCCB = 2.5 V ± 0.2 V 1 6.2
VCCB = 3.3 V ± 0.3 V 1 6.6
tPHZ OE B VCCB = 1.2 V 4.5 ns
VCCB = 1.5 V ± 0.1 V 1.5 9.4
VCCB = 1.8 V ± 0.15 V 1.3 8.2
VCCB = 2.5 V ± 0.2 V 1.1 6.2
VCCB = 3.3 V ± 0.3 V 0.9 5.2
tPLZ OE B VCCB = 1.2 V 4.5 ns
VCCB = 1.5 V ± 0.1 V 1.5 8.8
VCCB = 1.8 V ± 0.15 V 1.3 8.2
VCCB = 2.5 V ± 0.2 V 1.1 6.2
VCCB = 3.3 V ± 0.3 V 0.9 5.2

7.10 Switching Characteristics, VCCA = 3.3 V ± 0.3 V

over recommended operating free-air temperature range (for parameter descriptions, see Figure 3)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB MIN TYP MAX UNIT
tPLH, tPHL A B VCCB = 1.2 V 2.9 ns
VCCB = 1.5 V ± 0.1 V 0.1 5.6
VCCB = 1.8 V ± 0.15 V 0.1 4.5
VCCB = 2.5 V ± 0.2 V 0.1 3.3
VCCB = 3.3 V ± 0.3 V 0.1 2.9
tPLH, tPHL B A VCCB = 1.2 V 2.6 ns
VCCB = 1.5 V ± 0.1 V 0.6 4.2
VCCB = 1.8 V ± 0.15 V 0.4 3.4
VCCB = 2.5 V ± 0.2 V 0.2 3
VCCB = 3.3 V ± 0.3 V 0.1 2.8
tPZH, tPZL OE A VCCB = 1.2 V 3.8 ns
VCCB = 1.5 V ± 0.1 V 0.6 8.7
VCCB = 1.8 V ± 0.15 V 0.6 5.2
VCCB = 2.5 V ± 0.2 V 0.6 3.8
VCCB = 3.3 V ± 0.3 V 0.4 3.8
tPZH, tPZL OE B VCCB = 1.2 V 3.7 ns
VCCB = 1.5 V ± 0.1 V 0.8 8.7
VCCB = 1.8 V ± 0.15 V 0.6 6.8
VCCB = 2.5 V ± 0.2 V 0.5 4.7
VCCB = 3.3 V ± 0.3 V 0.5 3.8
tPHZ, tPLZ OE A VCCB = 1.2 V 4.8 ns
VCCB = 1.5 V ± 0.1 V 0.7 9.3
VCCB = 1.8 V ± 0.15 V 0.7 8.3
VCCB = 2.5 V ± 0.2 V 0.7 5.6
VCCB = 3.3 V ± 0.3 V 0.7 6.6
tPHZ, tPLZ OE B VCCB = 1.2 V 5.3 ns
VCCB = 1.5 V ± 0.1 V 1.4 9.3
VCCB = 1.8 V ± 0.15 V 1.2 8.1
VCCB = 2.5 V ± 0.2 V 1 6.4
VCCB = 3.3 V ± 0.3 V 0.8 6.2

7.11 Operating Characteristics

TA = 25°C
PARAMETER TEST
CONDITIONS
VCCA TYP UNIT
CpdA (1) A to B Outputs
enabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 1 pF
VCCA = VCCB = 1.5 V 1
VCCA = VCCB = 1.8 V 1
VCCA = VCCB = 2.5 V 1.5
VCCA = VCCB = 3.3 V 2
Outputs
disabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 1 pF
VCCA = VCCB = 1.5 V 1
VCCA = VCCB = 1.8 V 1
VCCA = VCCB = 2.5 V 1
VCCA = VCCB = 3.3 V 1
B to A Outputs
enabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 12 pF
VCCA = VCCB = 1.5 V 12.5
VCCA = VCCB = 1.8 V 13
VCCA = VCCB = 2.5 V 14
VCCA = VCCB = 3.3 V 15
Outputs
disabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 1 pF
VCCA = VCCB = 1.5 V 1
VCCA = VCCB = 1.8 V 1
VCCA = VCCB = 2.5 V 1
VCCA = VCCB = 3.3 V 1
CpdB (1) A to B Outputs
enabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 12 pF
VCCA = VCCB = 1.5 V 12.5
VCCA = VCCB = 1.8 V 13
VCCA = VCCB = 2.5 V 14
VCCA = VCCB = 3.3 V 15
Outputs
disabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 1 pF
VCCA = VCCB = 1.5 V 1
VCCA = VCCB = 1.8 V 1
VCCA = VCCB = 2.5 V 1
VCCA = VCCB = 3.3 V 1
B to A Outputs
enabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 1 pF
VCCA = VCCB = 1.5 V 1
VCCA = VCCB = 1.8 V 1
VCCA = VCCB = 2.5 V 1
VCCA = VCCB = 3.3 V 2
Outputs
disabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
VCCA = VCCB = 1.2 V 1 pF
VCCA = VCCB = 1.5 V 1
VCCA = VCCB = 1.8 V 1
VCCA = VCCB = 2.5 V 1
VCCA = VCCB = 3.3 V 1
(1) Power dissipation capacitance per transceiver. Refer to TI application report, CMOS Power Consumption and Cpd Calculation (SCAA035)

7.12 Typical Characteristics

SN74AVCH4T245 tc_low_ces576.gif Figure 1. Low-Level Output Voltage (VOL)
vs Low-Level Current (IOL)
SN74AVCH4T245 tc_high_ces576.gif Figure 2. High-Level Output Voltage (VOH)
vs High-Level Current (IOH)