SLAS579A April   2009  – June 2015 TLV2553-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  External Reference Specifications
    7. 6.7  Operating Characteristics
    8. 6.8  Timing Requirements, VREF+ = 5 V
    9. 6.9  Timing Requirements, VREF+ = 2.5 V
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Converter Operation
        1. 8.3.1.1 Data I/O Cycle
        2. 8.3.1.2 Sampling Cycle
        3. 8.3.1.3 Conversion Cycle
      2. 8.3.2  Power Up and Initialization
      3. 8.3.3  Data Input
      4. 8.3.4  Data Input - Address/Command Bits
      5. 8.3.5  Data Output Length
      6. 8.3.6  LSB Out First
      7. 8.3.7  Bipolar Output Format
      8. 8.3.8  Reference
      9. 8.3.9  EOC Output
      10. 8.3.10 Chip-Select Input (CS)
      11. 8.3.11 Power-Down Features
      12. 8.3.12 Analog MUX
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage(2) –0.5 6.5 V
VI Input voltage (any input) –0.3 VCC + 0.3
VO Output voltage –0.3 VCC + 0.3
Vref+ Positive reference voltage –0.3 VCC + 0.3
Vref– Negative reference voltage –0.3 VCC + 0.3
II Peak input current (any input) –20 20 mA
Peak total input current (all inputs) –30 30
TJ Operating virtual junction temperature –40 150 °C
TA Operating free-air temperature –40 85
Lead temperature 1.6 mm (1/16 inch) from the case for 10 s 260
Tstg Storage temperature –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to the GND terminal with REF– and GND wired together (unless otherwise noted).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 ±500
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VCC Supply voltage 2.7 5.5 V
I/O CLOCK frequency VCC = 4.5 V to 5.5 V 16-bit I/O 0.01 15 MHz
12-bit I/O 0.01 15
18-bit I/O 0.01 15
VCC = 2.7 to 3.6 V 0.01 10
Tolerable clock jitter, I/O CLOCK VCC = 4.5 V to 5.5 V 0.38 ns
Aperature jitter VCC = 4.5 V to 5.5 V 100 ps
Analog input voltage(1) VCC = 4.5 V to 5.5 V 0 REF+ – REF– V
VCC = 3 V to 3.6 V 0
VCC = 2.7 V to 3 V 0
VIH High-level control input voltage VCC = 4.5 V to 5.5 V 2 V
VCC = 2.7 V to 3.6 V 2.1
VIL Low-level control input voltage VCC = 4.5 V to 5.5 V 0.8 V
VCC = 2.7 V to 3.6 V 0.6
TA Operating free-air temperature –40 85 °C
(1) Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than the voltage applied to REF– convert as all zeros (000000000000).

6.4 Thermal Information

THERMAL METRIC(1) TLV2553-Q1 UNIT
DW (SOIC) PW (TSSOP)
20 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 66.0 88.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31.4 21.6 °C/W
RθJB Junction-to-board thermal resistance 33.7 40.4 °C/W
ψJT Junction-to-top characterization parameter 7.4 0.8 °C/W
ψJB Junction-to-board characterization parameter 33.3 39.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range, when VCC = 5 V: VREF+ = 5 V, I/O CLOCK frequency = 15 MHz,
when VCC = 2.7 V: VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VOH High-level output voltage VCC = 4.5 V, IOH = –1.6 mA
VCC = 2.7 V, IOH = –0.2 mA
30 pF 2.4 V
VCC = 4.5 V, IOH = –20 μA
VCC = 2.7 V, IOH = –20 μA
VCC – 0.1
VOL Low-level output voltage VCC = 4.5 V, IOL = –1.6 mA
VCC = 2.7 V, IOL = –0.8 mA
30 pF 0.4 V
VCC = 4.5 V, IOL = –20 μA
VCC = 2.7 V, IOL = –20 μA
0.1
IOZ High-impedance off-state output current VO = VCC, CS = VCC 1 2.5 μA
VO = 0 V, CS = VCC –1 –2.5
ICC Operating supply current CS = 0 V, External reference VCC = 5 V 1.2 mA
VCC = 2.7 V 0.9
ICC(PD) Power-down current For all digital inputs, 0 ≤ VI ≤ 0.5 V or VI ≥ VCC – 0.5 V, I/O CLOCK = 0 V Software power down 0.1 1 μA
Auto power down 0.1 10
IIH High-level input current VI = VCC 0.005 2.5 μA
IIL Low-level input current VI = 0 V –0.005 –2.5 μA
Ilkg Selected channel leakage current Selected channel at VCC ,
Unselected channel at 0 V
1 μA
Selected channel at 0 V,
Unselected channel at VCC
–1
fOSC Internal oscillator frequency VCC = 4.5 V to 5.5 V 3.27 MHz
VCC = 2.7 V to 3.6 V 2.56
tconvert Conversion time
(13.5 × (1/fOSC) + 25 ns)
VCC = 4.5 V to 5.5 V 4.15 μs
VCC = 2.7 V to 3.6 V 5.54
Internal oscillator frequency voltage 3.6 4.1 V
Zi Input impedance(2) Analog inputs VCC = 4.5 V 500 Ω
VCC = 2.7 V 600
Ci Input capacitance Analog inputs 45 55 pF
Control inputs 5 15
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) The switch resistance is very nonlinear and varies with input voltage and supply voltage. This is the worst case.

6.6 External Reference Specifications(2)

PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VREF– Reference input voltage, REF– VCC = 4.5 V to 5.5 V –0.1 0 0.1 V
VCC = 2.7 V to 3.6 V –0.1 0 0.1
VREF+ Reference input voltage, REF+ VCC = 4.5 V to 5.5 V 2 VCC V
VCC = 2.7 V to 3.6 V 2 VCC
External reference input voltage difference (REF+ – REF–) VCC = 4.5 V to 5.5 V 1.9 VCC V
VCC = 2.7 V to 3.6 V 1.9 VCC
IREF External reference supply current CS = 0 V VCC = 4.5 V to 5.5 V 0.94 mA
VCC = 2.7 V to 3.6 V 0.62
ZREF Reference input impedance VCC = 5 V Static 1
During sampling/conversion 6 9
VCC = 2.7 V Static 1
During sampling/conversion 6 9
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) Add a 0.1-μF capacitor between REF+ and REF– pins when external reference is used.

6.7 Operating Characteristics

over recommended operating free-air temperature range, when VCC = 5 V: VREF+ = 5 V, I/O CLOCK frequency = 15 MHz,
when VCC = 2.7 V: VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
INL Integral linearity error(3) –1 1 LSB
DNL Differential linearity error –1 1 LSB
EO Offset error(4) See (2) –2 2 mV
EG Gain error(4) See (2) –3 3 mV
ET Total unadjusted error(5) ±1.5 LSB
Self-test output code(6) (see Table 2 and Table 3) Address data input = 1011 2048
Address data input = 1100 0
Address data input = 1101 4095
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than the voltage applied to REF– convert as all zeros (000000000000).
(3) Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.
(4) Gain error is the difference between the actual midstep value and the nominal midstep value in the transfer diagram at the specified gain point after the offset error has been adjusted to zero. Offset error is the difference between the actual midstep value and the nominal midstep value at the offset point.
(5) Total unadjusted error comprises linearity, zero-scale errors, and full-scale errors.
(6) Both the input address and the output codes are expressed in positive logic.

6.8 Timing Requirements, VREF+ = 5 V

over recommended operating free-air temperature range,
VREF+ = 5 V, I/O CLOCK frequency = 15 MHz, VCC = 5 V, Load = 25 pF (unless otherwise noted)
MIN MAX UNIT
tw1 Pulse duration I/O CLOCK high or low 26.7 100000 ns
tsu1 Setup time DATA IN valid before I/O CLOCK rising edge (see Figure 26) 12 ns
th1 Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 26) 0 ns
tsu2 Setup time CS low before first rising I/O CLOCK edge(2) (see Figure 27) 25 ns
th2 Hold time CS pulse duration high time (see Figure 27) 100 ns
th3 Hold time CS low after last I/O CLOCK falling edge (see Figure 27) 0 ns
th4 Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 28) 2 ns
th5 Hold time CS high after EOC rising edge when CS is toggled (see Figure 31) 0 ns
td1 Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 25) Load = 25 pF 28 ns
Load = 10 pF 20
td2 Delay time CS rising edge to DATA OUT high impedance (see Figure 25) 10 ns
td3 Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 28) 2 20 ns
td4 Delay time last I/O CLOCK falling edge to EOC falling edge 55 ns
td5 Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion 1.5 μs
tt1 Transition time I/O CLOCK(2) (see Figure 28) 1 μs
tt2 Transition time DATA OUT (see Figure 28) 5 ns
tt3 Transition time EOC, CL = 7 pF (see Figure 30) 2.4 ns
tt4 Transition time DATA IN, CS 10 μs
tcycle Total cycle time (sample, conversion and delays)(2)  (1) μs
tsample Channel acquisition time (sample) at 1 kΩ(2)
(see Figure 33 through Figure 38)
Source impedance = 25 Ω 600 ns
Source impedance = 100 Ω 650
Source impedance = 500 Ω 700
Source impedance = 1 kΩ 1000
(1) tconvert(max) + I/O CLOCK period (8/12/16 CLKs)(2)
(2) I/O CLOCK period = 8 × [1/(I/O CLOCK frequency)] or 12 × [1/(I/O CLOCK frequency)] or 16 × [1/(I/O CLOCK frequency)], depending on I/O format selected

6.9 Timing Requirements, VREF+ = 2.5 V

over recommended operating free-air temperature range,
VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz, VCC = 2.7 V, Load = 25 pF (unless otherwise noted)
MIN MAX UNIT
tw1 Pulse duration I/O CLOCK high or low 40 100000 ns
tsu1 Setup time DATA IN valid before I/O CLOCK rising edge (see Figure 26) 22 ns
th1 Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 26) 0 ns
tsu2 Setup time CS low before first rising I/O CLOCK edge(2) (see Figure 27) 33 ns
th2 Hold time CS pulse duration high time (see Figure 27) 100 ns
th3 Hold time CS low after last I/O CLOCK falling edge (see Figure 27) 0 ns
th4 Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 28) 2 ns
th5 Hold time CS high after EOC rising edge when CS is toggled (see Figure 31) 0 ns
td1 Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 25) Load = 25 pF 30 ns
Load = 10 pF 22
td2 Delay time CS rising edge to DATA OUT high impedance (see Figure 25) 10 ns
td3 Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 28) 2 33 ns
td4 Delay time last I/O CLOCK falling edge to EOC falling edge 75 ns
td5 Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion 1.5 μs
tt1 Transition time I/O CLOCK(2) (see Figure 28) 1 μs
tt2 Transition time DATA OUT (see Figure 28) 5 ns
tt3 Transition time EOC, CL = 7 pF (see Figure 30) 4 ns
tt4 Transition time DATA IN, CS 10 μs
tcycle Total cycle time (sample, conversion and delays)(2)  (1) μs
tsample Channel acquisition time (sample), at 1 kΩ(2)
(see Figure 33 through Figure 38)
Source impedance = 25 Ω 800 ns
Source impedance = 100 Ω 850
Source impedance = 500 Ω 1000
Source impedance = 1 kΩ 1600
(1) tconvert(max) + I/O CLOCK period (8/12/16 CLKs)(2)
(2) I/O CLOCK period = 8 × [1/(I/O CLOCK frequency)] or 12 × [1/(I/O CLOCK frequency)] or 16 × [1/(I/O CLOCK frequency)], depending on I/O format selected

6.10 Typical Characteristics

VREF– = 0 V
TLV2553-Q1 D001_SLAS579.gif
VCC = 3.3 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 1. Supply Current vs Free-Air Temperature
TLV2553-Q1 D003_SLAS579.gif
VCC = 3.3 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 3. Software Power Down vs Free-Air Temperature
TLV2553-Q1 D005_SLAS579.gif
VCC = 2.7 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 5. Maximum Differential Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D007_SLAS579.gif
VCC = 2.7 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 7. Maximum Integral Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D011_SLAS579.gif
VCC = 3.3 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 9. Offset Error vs Free-Air Temperature
TLV2553-Q1 D013_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 11. Supply Current vs Free-Air Temperature
TLV2553-Q1 D015_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 13. Software Power Down vs Free-Air Temperature
TLV2553-Q1 D017_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 15. Maximum Differential Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D019_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 17. Maximum Integral Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D023_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 19. Offset Error vs Free-Air Temperature
TLV2553-Q1 D009_SLAS579.gif
VCC = 2.7 V VREF+ = 2.5 V I/O clock = 10 MHz
TA = 25°C
Figure 21. Differential Nonlinearity vs Digital Output Code
TLV2553-Q1 D021_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
TA = 25°C
Figure 23. Differential Nonlinearity vs Digital Output Code
TLV2553-Q1 D002_SLAS579.gif
VCC = 3.3 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 2. External Reference Current vs Free-Air Temperature
TLV2553-Q1 D004_SLAS579.gif
VCC = 3.3 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 4. Auto Power Down vs Free-Air Temperature
TLV2553-Q1 D006_SLAS579.gif
VCC = 2.7 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 6. Minimum Differential Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D008_SLAS579.gif
VCC = 2.7 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 8. Minimum Integral Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D012_SLAS579.gif
VCC = 3.3 V VREF+ = 2.5 V I/O clock = 10 MHz
Figure 10. Gain Error vs Free-Air Temperature
TLV2553-Q1 D014_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 12. External Reference Current vs Free-Air Temperature
TLV2553-Q1 D016_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 14. Auto Power Down vs Free-Air Temperature
TLV2553-Q1 D018_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 16. Minimum Differential Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D020_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 18. Minimum Integral Nonlinearity vs Free-Air Temperature
TLV2553-Q1 D024_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
Figure 20. Gain Error vs Free-Air Temperature
TLV2553-Q1 D010_SLAS579.gif
VCC = 2.7 V VREF+ = 2.5 V I/O clock = 10 MHz
TA = 25°C
Figure 22. Integral Nonlinearity vs Digital Output Code
TLV2553-Q1 D022_SLAS579.gif
VCC = 5.5 V VREF+ = 4.096 V I/O clock = 15 MHz
TA = 25°C
Figure 24. Integral Nonlinearity vs Digital Output Code