SLVS451G September   2003  – December 2014 TPS61020 , TPS61024 , TPS61025 , TPS61026 , TPS61027 , TPS61028 , TPS61029

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Schematic
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Controller Circuit
      2. 10.3.2 Synchronous Rectifier
      3. 10.3.3 Down Regulation
      4. 10.3.4 Device Enable
      5. 10.3.5 Undervoltage Lockout
      6. 10.3.6 Softstart and Short Circuit Protection
      7. 10.3.7 Low Battery Detector Circuit—LBI/LBO
      8. 10.3.8 Low-EMI Switch
    4. 10.4 Device Functional Modes
      1. 10.4.1 Undervoltage Lockout
      2. 10.4.2 Power Save Mode
    5. 10.5 Programming
      1. 10.5.1 Programming the Output Voltage
      2. 10.5.2 Programming the LBI/LBO Threshold Voltage
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Inductor Selection
        2. 11.2.2.2 Input Capacitor Selection
        3. 11.2.2.3 Output Capacitor Selection
      3. 11.2.3 Application Curves
    3. 11.3 System Examples
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
    3. 13.3 Thermal Considerations
  14. 14Device and Documentation Support
    1. 14.1 Device Support
      1. 14.1.1 Third-Party Products Disclaimer
    2. 14.2 Related Links
    3. 14.3 Trademarks
    4. 14.4 Electrostatic Discharge Caution
    5. 14.5 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

1 Features

  • 96% Efficient Synchronous Boost Converter
  • Output Voltage Remains Regulated When Input Voltage Exceeds Nominal Output Voltage
  • Device Quiescent Current: 25 µA (Typ)
  • Input Voltage Range: 0.9 V to 6.5 V
  • Fixed and Adjustable Output Voltage Options Up to 5.5 V
  • Power Save Mode for Improved Efficiency at Low Output Power
  • Low Battery Comparator
  • Low EMI-Converter (Integrated Anti-ringing Switch)
  • Load Disconnect During Shutdown
  • Overtemperature Protection
  • Small 3-mm × 3-mm VSON-10 Package

2 Applications

  • All One-Cell, Two-Cell, and Three-Cell Alkaline, NiCd or NiMH, or One-Cell Li-Ion or Li-Polymer Battery-Powered Products
  • Portable Audio Players
  • PDAs
  • Cellular Phones
  • Personal Medical Products
  • Camera White LED Flash Lights

3 Description

The TPS6102x family of devices provide a power supply solution for products powered by either a one-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. Output currents can go as high as 200 mA while using a single-cell alkaline battery, and discharge it down to 0.9 V. The device can also be used for generating 5 V at 500 mA from a 3.3-V rail or a Li-Ion battery. The boost converter is based on a fixed-frequency, pulse width modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. At low load currents the converter enters the power save mode to maintain a high efficiency over a wide-load current range. The Power Save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum peak current in the boost switch is limited to a value of 800 mA, 1500 mA, or 1800 mA depending on the version of the device.

The TPS6102x devices keep the output voltage regulated even when the input voltage exceeds the nominal output voltage. The output voltage can be programmed by an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. A low-EMI mode is implemented to reduce ringing and, in effect, lower radiated electromagnetic energy when the converter enters the discontinuous conduction mode. The device is packaged in a 10-pin VSON PowerPAD™ package measuring 3 mm x 3 mm (DRC).

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
TPS6102x VSON (10) 3.00 mm x 3.00 mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

4 Typical Schematic

TPS61020 TPS61024 TPS61025 TPS61026 TPS61027 TPS61028 TPS61029 typ_app_fp_lvs451.gif