JAJA675B November   2018  – October 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   商標
  2. 1グランド配線の最適化
    1. 1.1 よく使用される用語 / 接続
    2. 1.2 グランド・プレーンの使用
      1. 1.2.1 2 層基板技術
    3. 1.3 共通の問題
      1. 1.3.1 容量性および誘導性結合
      2. 1.3.2 同相および差動ノイズ
    4. 1.4 EMC に関する考慮事項
  3. 2熱の概要
    1. 2.1 PCB の熱伝導および対流
    2. 2.2 連続的な最上層のサーマル・パッド
    3. 2.3 銅厚
    4. 2.4 サーマル・ビアの接続
    5. 2.5 サーマル・ビアの幅
    6. 2.6 熱設計のまとめ
  4. 3ビア
    1. 3.1 ビアの電流容量
    2. 3.2 ビアのレイアウトに関する推奨事項
      1. 3.2.1 複数ビアのレイアウト
      2. 3.2.2 ビアの配置
  5. 4一般的な配線手法
  6. 5バルクおよびバイパス・コンデンサの配置
    1. 5.1 バルク・コンデンサの配置
    2. 5.2 チャージ・ポンプ・コンデンサ
    3. 5.3 バイパス / デカップリング・コンデンサの配置
      1. 5.3.1 電源の近く
      2. 5.3.2 電力段の近く
      3. 5.3.3 スイッチ電流源の近く
      4. 5.3.4 電流センス・アンプの近く
      5. 5.3.5 電圧レギュレータの近く
  7. 6MOSFET の配置と電力段の配線
    1. 6.1 一般的なパワー MOSFET パッケージ
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8 ピン SON
    2. 6.2 MOSFET のレイアウト構成
    3. 6.3 電力段のレイアウト設計
      1. 6.3.1 スイッチ・ノード
      2. 6.3.2 大電流ループ経路
      3. 6.3.3 VDRAIN センス・ピン
  8. 7電流センス・アンプの配線
    1. 7.1 シングル・ハイサイド電流シャント
    2. 7.2 シングル・ローサイド電流シャント
    3. 7.3 2 相および 3 相電流シャント・アンプ
    4. 7.4 部品選定
    5. 7.5 配置
    6. 7.6 配線
    7. 7.7 便利なツール (ネット・タイと差動ペア)
    8. 7.8 入力および出力フィルタ
    9. 7.9 必須事項と禁止事項
  9. 8関連資料
  10. 9改訂履歴

便利なツール (ネット・タイと差動ペア)

最新の CAD ツールの多くには、レイアウト・エンジニアが PCB を正しく配線するのに役立つ機能が実装されています。このセクションで説明している機能は、Altium Designer ツールの一部です。しかし、その他の多くのツールにも同様の機能があります。

初期段階で PCB を配線する際、センス抵抗の配線については、どの部品がどこに接続されるかを示すためのガイドが紛らわしい場合があります。ローサイド・シャント抵抗の場合、負の入力はグランドに直接接続し、正の入力はローサイドのソース・ピンへ接続する可能性があります。この状況を回避するため、設計者が配線中ではなく配置中に配線制約を設定できるように、デバイスとシャント抵抗の間にネット・タイを配置します。図 7-6 に、ネット・タイの配置例を示します。

GUID-9B81550E-6EC3-4C29-8547-B5DD06DECE32-low.gif図 7-6 ネット・タイの配置例

差動ペアを使用するレイアウト手法を使うと、密結合された 2 つの信号を並行配線することで同相ノイズを低減できます。シャント抵抗から CSA への信号を配線するために差動ペアを使うことを推奨します。ノイズの結合をさらに低減するため、ノイズに敏感なパターンをノイズの多い (スイッチング) 信号と並行して配線しないようにします。