JAJA798 October   2024 TLV702 , TLV703 , TLV755P , TPS74401 , TPS7A13 , TPS7A14 , TPS7A20 , TPS7A21 , TPS7A49 , TPS7A52 , TPS7A53 , TPS7A53B , TPS7A54 , TPS7A57 , TPS7A74 , TPS7A83A , TPS7A84A , TPS7A85A , TPS7A91 , TPS7A92 , TPS7A94 , TPS7A96 , TPS7H1111-SP

 

  1.   1
  2.   概要
  3.   商標
  4. 1リニア レギュレータのターンオン時間の概要
  5. 2何が LDO 立ち上がり時間に影響を及ぼすか?
    1. 2.1 シンプルな使用事例
      1. 2.1.1 ケース 1:NR フィルタ付きで CFF 容量なしの LDO
      2. 2.1.2 ケース 2:CFF 容量のある NR フィルタ
      3. 2.1.3 高速充電回路
      4. 2.1.4 理想的でない LDO の動作
        1. 2.1.4.1 電圧バイアスの印加
        2. 2.1.4.2 高速充電電流制御
        3. 2.1.4.3 内蔵誤差アンプのオフセット電圧
        4. 2.1.4.4 温度が高速充電電流源に影響
        5. 2.1.4.5 エラー アンプの同相電圧
        6. 2.1.4.6 リファレンス電圧 (V REF) のランプ時間がターンオン時間の支配的な要因になる場合
        7. 2.1.4.7 ドロップアウト モードでのスタートアップ
        8. 2.1.4.8 大きい値の COUT により内部電流制限発生
        9. 2.1.4.9 大信号 LDO 帯域幅に関する制限
    2. 2.2 具体的な使用事例および例
      1. 2.2.1 ケース 3:高精度電圧リファレンス、RNR/SS および並列 IFC 高速充電あり
      2. 2.2.2 ケース 4:高精度電圧リファレンス、IFC 高速充電あり、R NR/SSなし
      3. 2.2.3 ケース 5:高精度電流リファレンス
      4. 2.2.4 ケース 6:ソフトスタートのタイミング制御
  6. 3システムの注意事項
    1. 3.1 突入電流の計算
    2. 3.2 突入電流解析
    3. 3.3 最大スルーレート
  7. 4このホワイト ペーパーで参照した LDO レギュレータ
  8. 5まとめ
  9. 6参考資料

まとめ

このホワイト ペーパーでは、NR フィルタ、フィードフォワード コンデンサ、またはその両方を使用して LDO レギュレータのスタートアップ分析を定義する、今までに類を見ないフレームワークを説明しています。このフレームワークには、高速充電回路が及ぼす影響が含まれており、LDO レギュレータの内部高精度リファレンスのいずれのタイプにも対処できます (電圧リファレンスおよび電流リファレンス)。このホワイト・ペーパーは、最新の LDO レギュレータの理想的ではない特性と、それらが LDO の起動時間にどのような影響を及ぼすかについて説明しています。設計者はこのフレームワークを使用して、ターンオン ランプ時間および LDO 突入電流を計算できます。また、ターンオン時間中の出力電圧のスルーレートを評価して、LDO のスタートアップ動作がシステム要件を満たしていることを確認できます。