12ビット、RF サンプリング A/D コンバータ (ADC)" />

JAJSGI4B November   2018  – March 2021 ADC12DJ3200QML-SP

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: DC Specifications
    6. 6.6  Electrical Characteristics: Power Consumption
    7. 6.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 6.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagrams
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Analog Input Protection
        2. 7.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 7.3.1.3 Analog Input Offset Adjust
      2. 7.3.2 ADC Core
        1. 7.3.2.1 ADC Theory of Operation
        2. 7.3.2.2 ADC Core Calibration
        3. 7.3.2.3 ADC Overrange Detection
        4. 7.3.2.4 Code Error Rate (CER)
      3. 7.3.3 Timestamp
      4. 7.3.4 Clocking
        1. 7.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 7.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 7.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 7.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 7.3.4.3.2 Automatic SYSREF Calibration
      5. 7.3.5 Digital Down Converters (Dual-Channel Mode Only)
        1. 7.3.5.1 Numerically-Controlled Oscillator and Complex Mixer
          1. 7.3.5.1.1 NCO Fast Frequency Hopping (FFH)
          2. 7.3.5.1.2 NCO Selection
          3. 7.3.5.1.3 Basic NCO Frequency Setting Mode
          4. 7.3.5.1.4 Rational NCO Frequency Setting Mode
          5. 7.3.5.1.5 NCO Phase Offset Setting
          6. 7.3.5.1.6 NCO Phase Synchronization
        2. 7.3.5.2 Decimation Filters
        3. 7.3.5.3 Output Data Format
        4. 7.3.5.4 Decimation Settings
          1. 7.3.5.4.1 Decimation Factor
          2. 7.3.5.4.2 DDC Gain Boost
      6. 7.3.6 JESD204B Interface
        1. 7.3.6.1 Transport Layer
        2. 7.3.6.2 Scrambler
        3. 7.3.6.3 Link Layer
          1. 7.3.6.3.1 Code Group Synchronization (CGS)
          2. 7.3.6.3.2 Initial Lane Alignment Sequence (ILAS)
          3. 7.3.6.3.3 8b, 10b Encoding
          4. 7.3.6.3.4 Frame and Multiframe Monitoring
        4. 7.3.6.4 Physical Layer
          1. 7.3.6.4.1 SerDes Pre-Emphasis
        5. 7.3.6.5 JESD204B Enable
        6. 7.3.6.6 Multi-Device Synchronization and Deterministic Latency
        7. 7.3.6.7 Operation in Subclass 0 Systems
      7. 7.3.7 Alarm Monitoring
        1. 7.3.7.1 NCO Upset Detection
        2. 7.3.7.2 Clock Upset Detection
      8. 7.3.8 Temperature Monitoring Diode
      9. 7.3.9 Analog Reference Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Dual-Channel Mode
      2. 7.4.2 Single-Channel Mode (DES Mode)
      3. 7.4.3 JESD204B Modes
        1. 7.4.3.1 JESD204B Output Data Formats
        2. 7.4.3.2 Dual DDC and Redundant Data Mode
      4. 7.4.4 Power-Down Modes
      5. 7.4.5 Test Modes
        1. 7.4.5.1 Serializer Test-Mode Details
        2. 7.4.5.2 PRBS Test Modes
        3. 7.4.5.3 Ramp Test Mode
        4. 7.4.5.4 Short and Long Transport Test Mode
          1. 7.4.5.4.1 Short Transport Test Pattern
          2. 7.4.5.4.2 Long Transport Test Pattern
        5. 7.4.5.5 D21.5 Test Mode
        6. 7.4.5.6 K28.5 Test Mode
        7. 7.4.5.7 Repeated ILA Test Mode
        8. 7.4.5.8 Modified RPAT Test Mode
      6. 7.4.6 Calibration Modes and Trimming
        1. 7.4.6.1 Foreground Calibration Mode
        2. 7.4.6.2 Background Calibration Mode
        3. 7.4.6.3 Low-Power Background Calibration (LPBG) Mode
      7. 7.4.7 Offset Calibration
      8. 7.4.8 Trimming
      9. 7.4.9 Offset Filtering
    5. 7.5 Programming
      1. 7.5.1 Using the Serial Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Streaming Mode
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
      2. 7.6.2 SYSREF Calibration Registers (0x2B0 to 0x2BF)
      3. 7.6.3 Alarm Registers (0x2C0 to 0x2C2)
  8. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Analog Inputs
      2. 8.1.2 Analog Input Bandwidth
      3. 8.1.3 Clocking
      4. 8.1.4 Radiation Environment Recommendations
        1. 8.1.4.1 Single Event Latch-Up (SEL)
        2. 8.1.4.2 Single Event Functional Interrupt (SEFI)
        3. 8.1.4.3 Single Event Upset (SEU)
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 RF Input Signal Path
        2. 8.2.2.2 Calculating Values of AC-Coupling Capacitors
      3. 8.2.3 Application Curves
    3. 8.3 Initialization Set Up
      1.      Power Supply Recommendations
        1. 9.1 Power Sequencing
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks
      1.      Mechanical, Packaging, and Orderable Information

Trimming

Table 7-43 lists the parameters that can be trimmed and the associated registers.

Table 7-43 Trim Register Descriptions
TRIM PARAMETERTRIM REGISTERNOTES
Band-gap referenceBG_TRIMMeasurement on BG output pin.
Input termination resistanceRTRIM_x,
where x = A for INA± or B for INB±)
The device must be powered on with a clock applied.
Input offset voltageOADJ_x_VINy,
where x = ADC core (A, B or C)
and y = A for INA± or B for INB±)
A different trim value is allowed for each ADC core (A, B, or C) to allow more consistent offset performance in background calibration mode.
INA± and INB± gainGAIN_TRIM_x,
where x = A for INA± or B for INB±)
Set FS_RANGE_A and FS_RANGE_B to default values before trimming the input. Use FS_RANGE_A and FS_RANGE_B to adjust the full-scale input voltage.
INA± and INB± full-scale input voltageFS_RANGE_x,
where x = A for INA± or B for INB±)
Full-scale input voltage adjustment for each input. The default value is effected by GAIN_TRIM_x (x = A or B). Trim GAIN_TRIM_x with FS_RANGE_x set to the default value. FS_RANGE_x can then be used to trim the full-scale input voltage.
Intra-ADC core timing (bank timing)Bx_TIME_y,
where x = bank number (0–5)
and y = 0° or –90° clock phase
Trims the timing between the two banks of an ADC core (ADC A, B, or C) for two clock phases, either 0° or –90°. The –90° clock phase is used in single-channel mode only.
Inter-ADC core timing (dual-channel mode)TADJ_A, TADJ_B, TADJ_CA, TADJ_CBThe suffix letter (A, B, CA, or CB) indicates the ADC core that is being trimmed. CA indicates the timing trim in background calibration mode for ADC C when standing in for ADC A, whereas CB is the timing trim for ADC C when standing in for ADC B.
Inter-ADC core timing (single-channel mode)TADJ_A_FG90, TADJ_B_FG0, TADJ_A_BG90, TADJ_C_BG0, TADJ_C_BG90, TADJ_B_BG0The middle letter (A, B, or C) indicates the ADC core that is being trimmed. FG indicates a trim for foreground calibration while BG indicates background calibration. The suffix of 0 or 90 indicates the clock phase applied to the ADC core. 0 indicates a 0° clock and is sampling in-phase with the clock input. 90 indicates a 90° clock and therefore is sampling out-of-phase with the clock input. These timings must be trimmed for optimal performance if the user prefers to use INB± in single-channel mode. These timings are trimmed for INA± at the factory.