JAJU840 April   2022

 

  1.   概要
  2.   Resources
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Inductive Touch Buttons
      2. 2.2.2 Sensor Coil Placement
      3. 2.2.3 Collecting Data from Multiple LDCs
      4. 2.2.4 Magnetic Dial Implementation
      5. 2.2.5 CORDIC Algorithm
    3. 2.3 Highlighted Products
      1. 2.3.1 LDC3114-Q1
      2. 2.3.2 TMAG5273
      3. 2.3.3 DRV2605
      4. 2.3.4 TLV75518
      5. 2.3.5 TCA9534
      6. 2.3.6 PCA9543
      7. 2.3.7 Sensor Control Board
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Firmware and Programming
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 ABS Force Response
      2. 3.3.2 ABS Gain Corrected
      3. 3.3.3 Nylon Force Response
      4. 3.3.4 Nylon Gain Corrected
  9. 4Hardware Components
  10. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 サポート・リソース
    5. 5.5 Trademarks

TMAG5273

The TMAG5273 is a low-power linear 3D Hall-effect sensor designed for a wide range of industrial and personal electronics applications. This device integrates three independent Hall-effect sensors in the X, Y, and Z axes. A precision analog signal chain along with an integrated 12-bit ADC digitizes the measured analog magnetic field values. The I 2C interface, while supporting multiple operating VCC ranges, ensures seamless data communication with low-voltage microcontrollers. The device has an integrated temperature sensor available for multiple system functions, such as thermal budget check or temperature compensation calculation for a given magnetic field.

The TMAG5273 can be configured through the I2C interface to enable any combination of magnetic axes and temperature measurements. Additionally, the device can be configured to various power options (including wake-up and sleep mode) allowing designers to optimize system power consumption based on their system-level needs. Multiple sensor conversion schemes and I2C read frames help optimize throughput and accuracy. A dedicated INT pin can act as a system interrupt during low power wake-up and sleep mode, and can also be used by a microcontroller to trigger a new sensor conversion.

An integrated angle calculation engine (CORDIC) provides full 360° angular position information for both on-axis and off-axis angle measurement topologies. The angle calculation is performed using two user-selected magnetic axes. The device features magnetic gain and offset correction to mitigate the impact of system mechanical error sources