JAJU967 December   2024

 

  1.   1
  2.   概要
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. 1システムの説明
    1. 1.1 主なシステム仕様
  8. 2システム概要
    1. 2.1 ブロック図
    2. 2.2 設計上の考慮事項
      1. 2.2.1 小型でコンパクトなサイズ
      2. 2.2.2 トランスレス設計
    3. 2.3 主な使用製品
      1. 2.3.1  BQ25790 IIC 制御、1 ~ 4 セル、5A 昇降圧バッテリ チャージャ
      2. 2.3.2  TPS3422 低消費電力、プッシュボタン コントローラ、設定可能遅延付き
      3. 2.3.3  SN74LVC1G74 クリアとプリセット搭載、シングル ポジティブ エッジ トリガ型 D タイプ フリップ フロップ
      4. 2.3.4  TPS259470 2.7V ~ 23V、5.5A、28mΩ 真の逆電流ブロッキング eFuse
      5. 2.3.5  TPS54218 2.95V ~ 6V 入力、2A、同期整流降圧 SWIFT コンバータ
      6. 2.3.6  TPS54318 2.95V ~ 6V 入力、3A、同期整流降圧 SWIFT コンバータ
      7. 2.3.7  LM5158 2.2MHz、ワイド VIN、85V 出力、昇圧、SEPIC またはフライバック コンバータ
      8. 2.3.8  TPS61178 20V 負荷切断付き、完全統合型同期整流昇圧
      9. 2.3.9  LMZM23601 3.8mm × 3mm パッケージ封止、36V、1A 降圧 DC/DC パワー モジュール
      10. 2.3.10 TPS7A39 デュアル、150mA、広い VIN、正/負の低ドロップアウト (LDO) 電圧レギュレータ
      11. 2.3.11 TPS74401 3.0A、超低ドロップアウト レギュレータ、プログラム可能なソフト スタート機能付き
      12. 2.3.12 TPS7A96 2A、超低ノイズ、超高 PSRR、RF 電圧レギュレータ
      13. 2.3.13 遅延時間固定機能を搭載、LM3880 3 レール、シンプルな電源シーケンサ
      14. 2.3.14 不揮発性メモリを内蔵、DAC53401 10 ビット電圧出力 DAC
      15. 2.3.15 INA231 28V、16 ビット、I2C 出力電流、電圧と電力モニタ、WCSP でアラートを搭載
  9. 3システム設計理論
    1. 3.1 入力セクション
      1. 3.1.1 昇降圧チャージャ
      2. 3.1.2 電源をオンまたはオフにします
    2. 3.2 SEPIC および Cuk をベースとする高電圧電源の設計
      1. 3.2.1 SEPIC および Cuk コンバータの基本動作原理
      2. 3.2.2 SEPIC および Cuk を採用した非結合型インダクタを使用したデュアル高電圧電源設計
        1. 3.2.2.1 デューティ サイクル
        2. 3.2.2.2 インダクタの選択
        3. 3.2.2.3 パワー MOSFET の検証
        4. 3.2.2.4 出力ダイオードの選択
        5. 3.2.2.5 カップリング・コンデンサの選択
        6. 3.2.2.6 出力コンデンサの選択
        7. 3.2.2.7 入力コンデンサの選択
        8. 3.2.2.8 可変関数で出力電圧を設定
    3. 3.3 低電圧電源の設計
      1. 3.3.1 WEBENCH Power Designerを通じて TPS54218 を設計する
      2. 3.3.2 ±5V 送信電源の生成
    4. 3.4 システム クロックの同期
    5. 3.5 電源およびデータ出力コネクタ
    6. 3.6 システム電流と電力の監視
  10. 4ハードウェア、テスト要件、およびテスト結果
    1. 4.1 ハードウェア要件
    2. 4.2 テスト設定
    3. 4.3 テスト結果
      1. 4.3.1 効率テストの結果
      2. 4.3.2 ライン レギュレーション テストの結果
      3. 4.3.3 スペクトラムのテスト結果
  11. 5設計とドキュメントのサポート
    1. 5.1 デザイン ファイル
      1. 5.1.1 回路図
      2. 5.1.2 BOM
      3. 5.1.3 PCB レイアウトに関する推奨事項
        1. 5.1.3.1 高電圧電源のレイアウト
    2. 5.2 ツールとソフトウェア
    3. 5.3 ドキュメントのサポート
    4. 5.4 サポート・リソース
    5. 5.5 商標

デューティ サイクル

連続導通モード (CCM) で動作する SEPIC コンバータの場合、式 10 でデューティ サイクルを計算します。

式 10. D = V o u t p u t + V D V i n + V o u t p u t + V D

このリファレンス デザインで使用される高電圧設計では、LM5158 は 100kHz ~ 250kHz の範囲で 93% のデューティ サイクルに対応できます。式 10 から、計算されたデューティ サイクルは 93.8% に達します。そのため、この部品は電流不連続モードでわずかに動作しています。ただし、最小 3.26A の MOSFET を内蔵し、小型サイズを採用している場合、この部品は HVPS 用に選択されており、最大 ±25mA 電流を出力できます。回路の効率を 0.7 と仮定すると、入力電流は (75 × 0.025 × 2)/(5 × 0.7) = 1.072A となります。設計者がまったく同じ 2 つのインダクタを選択した場合、最大電流は約 2.57A です。LM5158 が不連続電流モードをサポートしていることは明らかです。VD は、ダイオード D1 の順方向電圧降下です。