SLVAFO8A April   2024  – May 2024 DRV8214 , DRV8234

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction: Need for Sensorless Designs
  5. 2Ripple Counting − Concept
    1. 2.1 Ripple Counting Algorithm Details
  6. 3Case Study: Robotic Wheel Drive
    1. 3.1 Robotic Wheel Motor Operating Conditions
    2. 3.2 Tuning Parameters for Ripple Counting
      1. 3.2.1 Resistance Parameters
      2. 3.2.2 KMC and KMC_SCALE
        1. 3.2.2.1 Tuning KMC_SCALE
        2. 3.2.2.2 Tuning KMC
    3. 3.3 Robotic Wheel Motor with Ripple Counting
      1. 3.3.1 Inrush and Steady State Performance
        1. 3.3.1.1 Motor Speed Calculation
      2. 3.3.2 Soft Start
      3. 3.3.3 Loaded Conditions
  7. 4Challenges and Workarounds
    1. 4.1 Low Average Currents
    2. 4.2 Motor Inertia During Stop
    3. 4.3 Inrush
    4. 4.4 High Load Conditions
  8. 5Summary
  9. 6References
  10. 7Revision History

Abstract

This application report describes the integrated sensorless implementation of speed and position sensing using the current ripple of a brushed dc (BDC) motor. When an BDC motor application requires position and speed information of the motor, these are usually measured using encoders or hall effect sensors. Such designs are expensive, require more space, and are complex to design and maintain over the lifetime of an application. Texas Instruments DRV8214 and DRV8234 fully integrated BDC motor drivers eliminate the need for these external hall sensors and encoders. In addition to detailed description of the setup and tuning of this implementation, examples with test results are included. The accuracy of the test results under various test conditions is also analyzed.