DLPU140A May   2024  – September 2025 DLP160AP , DLP160CP , DLP2000 , DLP2010 , DLP2010LC , DLP2010NIR , DLP2021-Q1 , DLP230GP , DLP230KP , DLP230NP , DLP300S , DLP3010 , DLP3010LC , DLP301S , DLP3020-Q1 , DLP3021-Q1 , DLP3030-Q1 , DLP3034-Q1 , DLP3310 , DLP4500 , DLP4500NIR , DLP4620S-Q1 , DLP4621-Q1 , DLP470NE , DLP470TE , DLP4710 , DLP4710LC , DLP471NE , DLP471TE , DLP471TP , DLP480RE , DLP500YX , DLP5500 , DLP550HE , DLP550JE , DLP5530-Q1 , DLP5530S-Q1 , DLP5531-Q1 , DLP5531A-Q1 , DLP5532-Q1 , DLP5533A-Q1 , DLP5534-Q1 , DLP6500FLQ , DLP6500FYE , DLP650LE , DLP650LNIR , DLP650NE , DLP650TE , DLP651LE , DLP651NE , DLP660TE , DLP670RE , DLP670S , DLP7000 , DLP7000UV , DLP780NE , DLP780TE , DLP781NE , DLP781TE , DLP800RE , DLP801RE , DLP801XE , DLP9000 , DLP9000X , DLP9000XUV , DLP9500 , DLP9500UV

 

  1.   1
  2.   Abstract
  3. 1DMD Diffraction Efficiency Calculator Functionality
  4. 2Installation and setup
  5. 3Input Parameters
    1. 3.1  Pixel Models (DMD Micromirror)
    2. 3.2  Parameter Sweeps
    3. 3.3  Wavelength
    4. 3.4  Illumination Angle of Incidence
    5. 3.5  Tilt Angle
    6. 3.6  ƒ/Number (Illumination and Projection)
    7. 3.7  Enhance Slider
    8. 3.8  Diffraction Energy Plot
    9. 3.9  Array Size
    10. 3.10 Output File Name
    11. 3.11 Average Diffraction Efficiency and Photopic Diffraction Efficiency
    12. 3.12 Apodization
    13. 3.13 Run Simulation
  6. 4Coordinate System
  7. 5Examples
    1. 5.1 High F/Number Illumination
    2. 5.2 Mismatched Illumination and Projection F/Number
    3. 5.3 Cantilever Versus Torsional With Same Pixel Pitch
    4. 5.4 Side Diamond Diffraction Pattern
    5. 5.5 Apodization
  8.   Trademarks
  9. 6References
  10. 7Revision History

Diffraction Energy Plot

The diffraction energy plot is essentially the diffraction pattern but represented in 3D. Determining a particular order’s magnitude in the 2D diffraction pattern can be difficult. The Diffraction Energy plot becomes useful when visualizing diffraction orders that do not heavily overlap and is most intuitive when a smaller wavelength range is applied. The plot is interactive and can give the user a more intuitive approach to the diffraction pattern simulation results. Figure 3-6 doesn't yield much information compared to the Diffraction Pattern plot, where as Figure 3-7 helps show the intensity variation between the orders which is more difficult to visualize in the Diffraction Pattern plot.

 Overlapping Diffraction Orders
                    With a Wide Wavelength Range Figure 3-6 Overlapping Diffraction Orders With a Wide Wavelength Range
 Non overlapping diffraction
                    orders with a narrow wavelength range Figure 3-7 Non overlapping diffraction orders with a narrow wavelength range