SBASAO8 June   2025 DAC39RF20

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - AC Specifications
    7. 6.7  Electrical Characteristics - Power Consumption
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 SPI Interface Timing Diagrams
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  DAC Output Modes
        1. 7.3.1.1 NRZ Mode
        2. 7.3.1.2 RF Mode
        3. 7.3.1.3 DES Modes
      2. 7.3.2  DAC Core
        1. 7.3.2.1 DAC Output Structure
        2. 7.3.2.2 Full-Scale Current Adjustment
      3. 7.3.3  DEM and Dither
      4. 7.3.4  Offset Adjustment
      5. 7.3.5  Clocking Subsystem
        1. 7.3.5.1 Converter Phase Locked Loop (CPLL)
        2. 7.3.5.2 Clock and SYSREF Delay
        3. 7.3.5.3 SYSREF Capture and Monitoring
          1. 7.3.5.3.1 SYSREF Frequency Requirements
          2. 7.3.5.3.2 SYSREF Pulses for Full Alignment
          3. 7.3.5.3.3 Automatic SYSREF Calibration and Tracking
            1. 7.3.5.3.3.1 SYSREF Automatic Calibration Procedure
            2. 7.3.5.3.3.2 Multi-device Alignment
            3. 7.3.5.3.3.3 Calibration Failure
            4. 7.3.5.3.3.4 SYSREF Tracking
        4. 7.3.5.4 Trigger Clocking
      6. 7.3.6  Digital Signal Processing Blocks
        1. 7.3.6.1  Bypass Mode
        2. 7.3.6.2  DUC Mode
          1. 7.3.6.2.1 Digital Upconverter (DUC)
            1. 7.3.6.2.1.1 Interpolation Filters
            2. 7.3.6.2.1.2 Numerically Controlled Oscillator (NCO)
              1. 7.3.6.2.1.2.1 Phase-continuous NCO Update Mode
              2. 7.3.6.2.1.2.2 Phase-coherent NCO Update Mode
              3. 7.3.6.2.1.2.3 Phase-sync NCO Update Mode
              4. 7.3.6.2.1.2.4 NCO Synchronization
                1. 7.3.6.2.1.2.4.1 JESD204C LSB Synchronization
        3. 7.3.6.3  DDS SPI Mode
        4. 7.3.6.4  DDS Vector Mode
          1. 7.3.6.4.1 Second Order Amplitude Support
          2. 7.3.6.4.2 Vector Order and Symmetric Vector Mode
          3. 7.3.6.4.3 Initial Startup
          4. 7.3.6.4.4 Trigger Queuing
          5. 7.3.6.4.5 Trigger Burst
          6. 7.3.6.4.6 Hold Mode
          7. 7.3.6.4.7 Indexing Mode
          8. 7.3.6.4.8 Queued or Burst Triggers in Indexing-Mode
          9. 7.3.6.4.9 Writing Vectors While DDS is Enabled
        5. 7.3.6.5  DDS Streaming Mode
        6. 7.3.6.6  DSP Triggering
          1. 7.3.6.6.1 Trigger Latency
        7. 7.3.6.7  NCO Square Wave Mode
          1. 7.3.6.7.1 Square Wave Enable
        8. 7.3.6.8  DSP Mute Function
        9. 7.3.6.9  DSP Output Gain
        10. 7.3.6.10 Complex Output Support
        11. 7.3.6.11 Channel Bonder
        12. 7.3.6.12 Programmable FIR Filter
          1. 7.3.6.12.1 PFIR Coefficients
          2. 7.3.6.12.2 PFIR Reflection Cancellation Mode
          3. 7.3.6.12.3 PFIR Power Savings
          4. 7.3.6.12.4 PFIR Usage
        13. 7.3.6.13 DES Interpolator
          1. 7.3.6.13.1 DAC Mute Function
      7. 7.3.7  Serdes Physical Layer
        1. 7.3.7.1 Serdes PLL
          1. 7.3.7.1.1 Enabling the Serdes PLL
          2. 7.3.7.1.2 Reference Clock
          3. 7.3.7.1.3 PLL VCO Calibration
          4. 7.3.7.1.4 Serdes PLL Loop Bandwidth
        2. 7.3.7.2 Serdes Receiver
          1. 7.3.7.2.1 Serdes Data Rate Selection
          2. 7.3.7.2.2 Serdes Receiver Termination
          3. 7.3.7.2.3 Serdes Receiver Polarity
          4. 7.3.7.2.4 Serdes Clock Data Recovery
          5. 7.3.7.2.5 Serdes Equalizer
            1. 7.3.7.2.5.1 Adaptive Equalization
            2. 7.3.7.2.5.2 Fixed Equalization
            3. 7.3.7.2.5.3 Pre and Post Cursor Analysis
          6. 7.3.7.2.6 Serdes Receiver Eyescan
            1. 7.3.7.2.6.1 Eyescan Procedure
            2. 7.3.7.2.6.2 Building an Eye Diagram
        3. 7.3.7.3 Serdes PHY Status
      8. 7.3.8  JESD204C Interface
        1. 7.3.8.1 Deviation from JESD204C Standard
        2. 7.3.8.2 Link Layer
          1. 7.3.8.2.1 Serdes Crossbar
          2. 7.3.8.2.2 Bit Error Rate Tester
          3. 7.3.8.2.3 Scrambler and Descrambler
          4. 7.3.8.2.4 64b and 66b Decoding Link Layer
            1. 7.3.8.2.4.1 Sync Header Alignment
            2. 7.3.8.2.4.2 Extended Multiblock Alignment
            3. 7.3.8.2.4.3 Data Integrity
          5. 7.3.8.2.5 8B and 10B Encoding Link Layer
            1. 7.3.8.2.5.1 Code Group Synchronization (CGS)
            2. 7.3.8.2.5.2 Initial Lane Alignment Sequence (ILAS)
            3. 7.3.8.2.5.3 Multi-frames and the Local Multiframe Clock (LMFC)
            4. 7.3.8.2.5.4 Frame and Multiframe Monitoring
            5. 7.3.8.2.5.5 Link Restart
            6. 7.3.8.2.5.6 Link Error Reports
            7. 7.3.8.2.5.7 Watchdog Timer (JTIMER)
        3. 7.3.8.3 SYSREF Alignment Required in Subclass 1 Mode
        4. 7.3.8.4 Transport Layer
        5. 7.3.8.5 JESD204C Debug Capture (JCAP)
          1. 7.3.8.5.1 Physical Layer Debug Capture
          2. 7.3.8.5.2 Link Layer Debug Capture
          3. 7.3.8.5.3 Transport Layer Debug Capture
        6. 7.3.8.6 JESD204C Interface Modes
          1. 7.3.8.6.1 JESD204C Format Diagrams
            1. 7.3.8.6.1.1 16-bit Formats
            2. 7.3.8.6.1.2 12-bit Formats
            3. 7.3.8.6.1.3 8-bit Formats
          2. 7.3.8.6.2 DUC and DDS Modes
      9. 7.3.9  Data Path Latency
      10. 7.3.10 Multi-Device Synchronization and Deterministic Latency
        1. 7.3.10.1 Programming RBD
        2. 7.3.10.2 Multiframe Lengths less than 32 Octa-Bytes (256 Bytes)
        3. 7.3.10.3 Recommended Algorithm to Determine the RBD Value
        4. 7.3.10.4 Operation in Subclass 0 Systems
      11. 7.3.11 Link Reset
      12. 7.3.12 Alarm Generation
        1. 7.3.12.1 Over Range Detection
        2. 7.3.12.2 Over Range Masking
      13. 7.3.13 Mute Function
        1. 7.3.13.1 Alarm Data Path Muting
        2. 7.3.13.2 Transmit Enables
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Modes
  9. Programming
    1. 8.1 Using the Standard SPI Interface
      1. 8.1.1 SCS
      2. 8.1.2 SCLK
      3. 8.1.3 SDI
      4. 8.1.4 SDO
      5. 8.1.5 Serial Interface Protocol
      6. 8.1.6 Streaming Mode
    2. 8.2 Using the Fast Reconfiguration Interface
    3. 8.3 Register Maps
      1. 8.3.1  Standard_SPI-3.1 Registers
      2. 8.3.2  System Registers
      3. 8.3.3  Trigger Registers
      4. 8.3.4  CPLL_AND_CLOCK Registers
      5. 8.3.5  SYSREF Registers
      6. 8.3.6  JESD204C Registers
      7. 8.3.7  JESD204C_Advanced Registers
      8. 8.3.8  SerDes_Equalizer Registers
      9. 8.3.9  SerDes_Eye-Scan Registers
      10. 8.3.10 SerDes_Lane_Status Registers
      11. 8.3.11 SerDes_PLL Registers
      12. 8.3.12 DAC_and_Analog_Configuration Registers
      13. 8.3.13 Datapath Registers
      14. 8.3.14 NCO_and_Mixer Registers
      15. 8.3.15 Alarm Registers
      16. 8.3.16 Fuse_Control Registers
      17. 8.3.17 Fuse_Backed Registers
      18. 8.3.18 DDS_Vector_Mode Registers
      19. 8.3.19 Programmable_FIR Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Startup Procedure
      2. 9.1.2 Bandwidth Optimization for Square Wave Mode
    2. 9.2 Typical Application: Ku-Band Radar Transmitter
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power Up and Down Sequence
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines and Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
Serdes Clock Data Recovery

The clock recovery algorithms operate to adjust the clocks used to sample nSRX+ and nSRX- so that the data samples are taken midway between data transitions.

The algorithm uses a basic technique to determine whether the sampling clock is correctly placed, and if not whether the sampling clock needs to be moved earlier or later. When two contiguous data samples are different, the edge sample between the two is examined. The sampling clock can be considered early or late depending on whether the edge sample matches the first or second data sample respectively.

Every 32 UI, 32 such comparisons are made, with each result counted as a vote to move the sample point either earlier or later (positions where no transition occurred produce no vote). If the majority are early or late votes, an internal counter is incremented or decremented respectively. When the internal counter overflows or underflows, the sampling instant of the clock is adjusted later or earlier respectively (by 1/64 UI).

Each time the sampling instant of the clock is adjusted, the internal counter returns to mid-code, and a blanking interval occurs (also called “settling time”). During the blanking interval, no votes are counted. This is necessary to make sure that the incoming data and edge samples have reflected the new sampling instant. This can prevent the algorithm from overshooting. The blanking interval (settling time) is defined by the CDRSTL register field. The largest setting can provide power savings.

The size of the internal counter (and therefore the number of increments or decrements required to adjust the sampling instant) is programmable (see CRDVOTE register field).

Note that the clock recovery algorithm continues to operate even if the SIG_DET[n] status bit is low (loss of signal).