SBOA601 January   2025 LOG200

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Critical Photodiode Specifications
  6. 3Interfacing the LOG200 With the Photosensor
    1. 3.1 Photodiode Connections
    2. 3.2 Photodiode Adaptive Biasing Current Output
  7. 4Optical Bench for Current Sensing Measurements
    1. 4.1 Transient Response with Photosensor
  8. 5Optical Power Measurements with the LOG200
  9. 6Error Sources and Uncalibrated Error Analysis
  10. 7Auxiliary Op Amp Circuits
    1. 7.1 Single-Ended to Differential Conversion Circuit
    2. 7.2 Sallen-Key Low-Pass Filter
  11. 8Summary
  12. 9References

Error Sources and Uncalibrated Error Analysis

This section shows an example of the LOG200 circuit estimated DC error analysis. These calculations use the typical LOG200 data sheet specifications to calculate the device's uncalibrated DC accuracy. This error estimate only includes the errors of the LOG200 device stand-alone.

This example assumes a photosensor application requiring a current range of 20nA to 2.5mA, where the LOG200 connects to a 12-Bit pseudo-differential input ADC powered with a 3V supply. Figure 6-1 shows the LOG200 circuit connections to the ADC.

 LOG200 Circuit connected to
                    Pseudo-Differential Input ADC Figure 6-1 LOG200 Circuit connected to Pseudo-Differential Input ADC

Table 6-3 show the typical LOG200 specifications for error calculation:

Table 6-1 LOG200 Specifications for Error Calculation
Parameter Description/Comment Error
Typical
UNIT
KError Scaling factor error
100pA to 1mA
±0.15 %
LCEError Logarithmic conformity error
10nA to 1mA
±0.050 %
IREF_Error Reference current error
±0.3% of IREF = 1µA
±0.003 µA
VOSO Output offset error of logarithmic amplifier ±1.300 mV

Equation 9 shows the LOG200 designed for transfer function:

Equation 9. V L O G _ I d e a l = K × l o g 10 I P D I R E F + V R E F

Equation 10 uses the designed for LOG200 transfer function to calculate the logarithmic amplifier output while adding the typical data sheet error parameters:

Equation 10. V L O G O U T _ A c t u a l = K   +   K × l o g 10 I P D I R E F -   I R E F + V R E F ± V R E F ± L C E E r ± V O S O

On a typical photodiode measurement application, where the photosensor connects to I1, VOS does not contribute a significant error on the log amplifier transfer function. When the photodiode is biased with a proper reverse voltage, the sensor produces an input current virtually independent of the small input offset voltage VOS. Therefore, in this photodiode measurement, VLOG_Actual is only dependent on the output offset error (VOSO) of the logarithmic amplifier.

In this example, the REF165 1.65V reference connects to the negative input of a pseudo-differential input ADC, where the ADC converts only the difference between the ADC positive and negative inputs (AINP-AINN). Therefore, the accuracy of the voltage reference does not contribute to an error in the overall ADC conversionEquation 11 provides an estimate the total uncalibrated output error for a given photodiode current in this example:

Equation 11. V L O G O U T _ A c t u a l = K   +   K × l o g 10 I P D I R E F -   I R E F + V R E F ± L C E E r ± V O S O

Table 6-2 summarizes the primary error sources in the LOG200 application. The calculations assume a photosensor application requiring a current range from Imin = 20nA to Imax = 2mA.

Table 6-2 Estimated VLOG Uncalibrated Error Calculations From Typical Spec
Parameter Equation Result
Uncalibrated DC accuracy at Imin = 20nA, at 25 °C
Nominal log amp output at Imin
VLOG_Imin
V L O G _ I m i n = K × l o g 10 I m i n I R E F + V R E F 1.2253V
Log conformity error at Imin
LCEError_Imin
Δ L C E E r _ I m i n = L C E E r r o r × V L O G _ I m i n - V R E F -0.212mV
Actual log amp output at Imin
VLOG_Actual_Imin
V L O G _ A c t u a l _ I m i n = K   +   K × l o g 10 I P D I R E F -   I R E F + V R E F - Δ L C E E r _ I m i n - V O S O 1.223V
Log amp error at at Imin
VLOG_Error_Imin
V L O G _ E r _ I m i n = V L O G _ I m i n - V L O G _ A c t u a l _ I m i n -2.598mV
Uncalibrated DC accuracy at Imax = 2.5mA, at 25 °C
Nominal log amp output at Imax
VLOG_Imax
V L O G _ I m a x = K × l o g 10 I m a x I R E F + V R E F 2.4995V
Log conformity error at Imax
LCEError_Imax
Δ L C E E r _ I m a x = L C E E r r o r × V L O G _ I m a x - V R E F 0.425mV
Actual log amp output at Imax
VLOG_Actual_Imax
V L O G _ A c t u a l _ I m a x = K   +   K × l o g 10 I m a x I R E F -   I R E F + V R E F + Δ L C E E r _ I m a x + V O S O 2.504V
Log amp error at at Imax
VLOG_Error_Imax
V L O G _ E r _ I m a x = V L O G _ I m a x - V L O G _ A c t u a l _ I m a x 4.526mV
Total uncalibrated error as % of full-scale
% Full-scale error at Imin
VLOG_Error_Imin_FS
V L O G _ E r _ I m i n _ F S = V L O G _ E r _ I m i n V L O G _ I m a x - V L O G _ I m i n × 100 % -0.204%
% Full-scale error at Imax
VLOG_Error_Imax_FS
V L O G _ E r _ I m a x _ F S = V L O G _ E r _ I m a x V L O G _ I m a x - V L O G _ I m i n × 100 % 0.355%

The typical error specifications are added into the LOG200 transfer function to calculate a total compounded error. Since the absolute values are added together to calculate the total error, calculations using these typical values can yield a conservative error analysis, as the summation of uncorrelated errors tends to result in a larger compounded total predicted error than the actual total error observed on a real system. In many applications, the circuit designer can perform a two point linear calibration to reduce the errors due to offset and scale factor, resulting in a smaller DC error.