SLAA450G April   2010  – April 2020

 

  1.   Creating a Custom Flash-Based Bootloader (BSL)
    1.     Trademarks
    2. 1 5xx and 6xx Bootloader Customization
      1. 1.1 BSL Memory Layout
        1. 1.1.1 Z-Area
        2. 1.1.2 BSL Reserved Memory Locations
      2. 1.2 Device Start-up Sequence
        1. 1.2.1 BSL Protect Function
          1. 1.2.1.1 Protection of BSL Memory
          2. 1.2.1.2 Checking for BSL Invoke
      3. 1.3 TI-Supplied BSL Software
        1. 1.3.1 Software Overview
        2. 1.3.2 Software File Details
          1. 1.3.2.1 BSL430_Low_Level_Init.s43 (IAR) / BSL430_Low_Level_Init.asm (CCS)
          2. 1.3.2.2 BSL_Device_File.h
          3. 1.3.2.3 lnk430FXXXX_BSL_AREA.xcl (IAR) / MSP430Fxxxx_BSL.cmd (CCS)
        3. 1.3.3 Known Limitations in CCS CSL Code Example
          1. 1.3.3.1 Memory Allocation of BSL Code Under Linker Command File
          2. 1.3.3.2 BSL Functions Supported in the Default Setting Project
          3. 1.3.3.3 How to Accomodate Full Function of BSL
          4. 1.3.3.4 Using Modified boot_hook.h and boot.c (CCS Only)
      4. 1.4 Creation of Custom Peripheral Interface
        1. 1.4.1 PI_init ()
        2. 1.4.2 PI_receivePacket()
        3. 1.4.3 PI_sendData(int bufSize)
      5. 1.5 BSL Development and Debug
        1. 1.5.1 Development and Testing
        2. 1.5.2 Special Notes and Tips
        3. 1.5.3 USB BSL External Oscillator Frequency
    3. 2 G2xx Bootloader Creation and Customization
      1. 2.1 Target System Specification
      2. 2.2 BSL Specification
        1. 2.2.1 Functionality
          1. 2.2.1.1 Entry Sequence
          2. 2.2.1.2 Synchronization
          3. 2.2.1.3 Erasing Previous Flash Content
          4. 2.2.1.4 Receiving and Writing New User Data
          5. 2.2.1.5 Data Verification
        2. 2.2.2 Memory Footprint
        3. 2.2.3 Peripherals
      3. 2.3 Implementation
        1. 2.3.1 BSL Assembler Code
          1. 2.3.1.1 Save DCO Calibration Data
          2. 2.3.1.2 Linker Command File
            1. 2.3.1.2.1 Locating the Linker Command File
            2. 2.3.1.2.2 Modify Linker File
            3. 2.3.1.2.3 Force the IDE to Use Custom Linker File
          3. 2.3.1.3 Project Settings
        2. 2.3.2 User Application
      4. 2.4 BSL Operation
        1. 2.4.1 Hardware Setup
        2. 2.4.2 Connection to Host
          1. 2.4.2.1 Determining COM Port
          2. 2.4.2.2 Setup of COM Port
        3. 2.4.3 Operate BSL - Standard Sequence
        4. 2.4.4 Create New Code to Download Through BSL
          1. 2.4.4.1 Create Custom Application
          2. 2.4.4.2 Save Calibration Data
          3. 2.4.4.3 Make User Application Code a BSL Update File
            1. 2.4.4.3.1 Using CCS
            2. 2.4.4.3.2 Using IAR
          4. 2.4.4.4 Obtaining XOR Checksum
            1. 2.4.4.4.1 Send User Data
            2. 2.4.4.4.2 Read Checksum
            3. 2.4.4.4.3 Send Acquired Checksum
            4. 2.4.4.4.4 Verify Data
            5. 2.4.4.4.5 Save Checksum
        5. 2.4.5 Getting Ready for Production
    4. 3 Frequently Asked Questions (FAQ)
  2.   Revision History

USB BSL External Oscillator Frequency

The USB BSL uses a routine to measure the speed of the external oscillator that is used in the application. The BSL does this by comparing the speed of the external clock to a known calibrated internal clock. In this way, the default BSL can be used without modification with certain specific external oscillator frequencies. If other frequencies are to be used in an application, the SPEED_x and corresponding SPEED_x_PLL values can be changed. They must be in order from highest to lowest speed. If only one speed will be used, all values must still be defined, but can be defined as the same frequency.

//9MHz Example Code #define SPEED_1 9000000 #define SPEED_1_PLL USBPLL_SETCLK_9_0 #define SPEED_2 SPEED_1 #define SPEED_2_PLL SPEED_1_PLL #define SPEED_3 SPEED_1 #define SPEED_3_PLL SPEED_1_PLL #define SPEED_4 SPEED_1 #define SPEED_4_PLL SPEED_1_PLL

Even in the case where only one known frequency is used, as shown in this code example, it is important to keep the measurement loop in the USB Peripheral Interface, as it is also used for a delay to allow for crystal start-up.