SLAAEF9A November   2023  – May 2025 MSPM0C1104 , MSPM0G3507 , MSPM0H3216 , MSPM0L1227 , MSPM0L1227-Q1 , MSPM0L1228 , MSPM0L1228-Q1 , MSPM0L1306 , MSPM0L2227 , MSPM0L2227-Q1 , MSPM0L2228 , MSPM0L2228-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1MSPM0 Portfolio Overview
    1. 1.1 Introduction
    2. 1.2 Portfolio Comparison of Renesas RL78 MCUs to MSPM0 MCUs
  5. 2Ecosystem And Migration
    1. 2.1 Ecosystem Comparison
      1. 2.1.1 MSPM0 Software Development Kit (MSPM0 SDK)
      2. 2.1.2 The IDE Supported By MSPM0
      3. 2.1.3 SysConfig
      4. 2.1.4 Debug Tools
      5. 2.1.5 LaunchPad™
    2. 2.2 Migration Process
      1. 2.2.1 Step 1: Choose The Right MSPM0 MCU
      2. 2.2.2 Step 2. Set Up IDE And Quick Introduction of CCS
        1. 2.2.2.1 Set Up IDE
        2. 2.2.2.2 Quick Introduction of CCS
      3. 2.2.3 Step 3: Set Up MSPM0 SDK And Quick Introduction of MSPM0 SDK
        1. 2.2.3.1 Set Up MSPM0 SDK
        2. 2.2.3.2 Quick Introduction of SDK
      4. 2.2.4 Step 4: Software Evaluation
      5. 2.2.5 Step 5. PCB Board Design
      6. 2.2.6 Step 6. Mass Production
    3. 2.3 Example
  6. 3Core Architecture Comparison
    1. 3.1 CPU
    2. 3.2 Embedded Memory Comparison
      1. 3.2.1 Flash Features
      2. 3.2.2 Flash Organization
        1. 3.2.2.1 Flash Memory Regions
        2. 3.2.2.2 NONMAIN Memory of MSPM0
        3. 3.2.2.3 Flash Memory Registers of RL78
      3. 3.2.3 Embedded SRAM
    3. 3.3 Power-up and Reset Summary and Comparison
    4. 3.4 Clocks Summary and Comparison
      1. 3.4.1 Oscillators
        1. 3.4.1.1 MSPM0 Oscillators
      2. 3.4.2 Clock Signal Comparison
    5. 3.5 MSPM0 Operating Modes Summary and Comparison
      1. 3.5.1 Operating Modes Comparison
      2. 3.5.2 MSPM0 Capabilities in Lower Modes
      3. 3.5.3 Entering Lower-Power Modes
      4. 3.5.4 Low-Power Mode Code Examples
    6. 3.6 Interrupts and Events Comparison
      1. 3.6.1 Interrupts and Exceptions
        1. 3.6.1.1 Interrupt Management of RL78
        2. 3.6.1.2 Interrupt Management of MSPM0
      2. 3.6.2 Event Handler of MSPM0
      3. 3.6.3 Event Link Controller (ELC) of RL78
      4. 3.6.4 Event Management Comparison
    7. 3.7 Debug and Programming Comparison
      1. 3.7.1 Debug Comparison
      2. 3.7.2 Programming Mode Comparison
        1. 3.7.2.1 Bootstrap Loader (BSL) Programming of MSPM0
        2. 3.7.2.2 Serial Programming (Using External Device) of RL78
  7. 4Digital Peripheral Comparison
    1. 4.1 General-Purpose I/O (GPIO, IOMUX)
    2. 4.2 Universal Asynchronous Receiver-Transmitter (UART)
    3. 4.3 Serial Peripheral Interface (SPI)
    4. 4.4 Inter-Integrated Circuit (I2C)
    5. 4.5 Timers (TIMGx, TIMAx)
    6. 4.6 Windowed Watchdog Timer (WWDT)
    7. 4.7 Real-Time Clock (RTC)
  8. 5Analog Peripheral Comparison
    1. 5.1 Analog-to-Digital Converter (ADC)
    2. 5.2 Comparator (COMP)
    3. 5.3 Digital-to-Analog Converter (DAC)
    4. 5.4 Operational Amplifier (OPA)
    5. 5.5 Voltage References (VREF)
  9. 6Summary
  10. 7References
  11. 8Revision History

SysConfig

Similar to Smart Configuration, SysConfig is an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components. SysConfig helps manage, expose, and resolve conflicts visually so that you have more time to create differentiated applications. The tool output includes C header and code files that can be used with MSPM0 SDK examples or used to configure custom software. SysConfig is integrated into CCS but can also be used with Keil and IAR. SysConfig can be downloaded at SYSCONFIG IDE, configuration, compiler or debugger | TI.com.

Besides, SysConfig can run without an IDE. The standalone version can be used for code generation and to evaluate the capabilities of the device, but is not capable of running an example.

 MSPM0 SysConfig Figure 2-4 MSPM0 SysConfig

For more details, refer to MSPM0 SysConfig Guide.

Compared to Smart Configuration, SysConfig has the following advantages:

  • The classification of peripherals in SysConfig is clearer, the overall interface has high readability, and the human-computer interaction interface is great, as shown in Figure 2-5.
  • SysConfig has a hardware schematic display and detailed description of each peripheral, and a detailed functional description of any configuration of the GUI interface.
  • Smart Configuration interrupts and pin settings are in a separate module, which is cluttered and not conducive to development. TI's SysConfig can be configured directly in specific peripheral modules, which makes development easy and clear. The comparison of interrupt settings is shown in Figure 2-6. SysConfig can realize multiple peripheral linkage configurations, such as Event configuration in ADC module.
  • When users configure the specific functions of a peripheral, SysConfig can show the code changes in real -ime, and cannot be seen in smart configuration immediately.
 Peripheral List
                    Comparison Figure 2-5 Peripheral List Comparison
 Comparison of Interrupt
                    Settings Figure 2-6 Comparison of Interrupt Settings