SLAAEG4B October   2023  – July 2025 MSPM0C1104 , MSPM0C1105 , MSPM0C1106 , MSPM0H3216 , MSPM0L1306

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. MSPM0C Hardware Design Check List
  5. Power Supplies in MSPM0C Devices
    1. 2.1 Digital Power Supply
    2. 2.2 Analog Power Supply
    3. 2.3 Built-in Power Supply and Voltage Reference
    4. 2.4 Recommended Decoupling Circuit for Power Supply
  6. Reset and Power Supply Supervisor
    1. 3.1 Digital Power Supply
    2. 3.2 Power Supply Supervisor
      1. 3.2.1 Power-On Reset (POR) Monitor
      2. 3.2.2 Brownout Reset (BOR) Monitor
      3. 3.2.3 POR and BOR Behavior During Supply Changes
  7. Clock System
    1. 4.1 Internal Oscillators
      1. 4.1.1 Internal Low-Frequency Oscillator (LFOSC)
      2. 4.1.2 Internal System Oscillator (SYSOSC)
    2. 4.2 External Oscillators & External Clock Input
      1. 4.2.1 Low-Frequency Crystal Oscillator (LFXT)
      2. 4.2.2 LFCLK_IN (Digital Clock)
      3. 4.2.3 High-Frequency Crystal Oscillator (HFXT)
      4. 4.2.4 HFCLK_IN (Digital Clock)
    3. 4.3 External Clock Output (CLK_OUT)
    4. 4.4 Frequency Clock Counter (FCC)
  8. Debugger
    1. 5.1 Debug Port Pins and Pinout
    2. 5.2 Debug Port Connection With Standard JTAG Connector
      1. 5.2.1 Standard XDS110
      2. 5.2.2 Lite XDS110 (MSPM0 LaunchPad™ kit)
  9. Key Analog Peripherals
    1. 6.1 ADC Design Considerations
    2. 6.2 COMP and DAC Design Considerations
  10. Key Digital Peripherals
    1. 7.1 Timer Resources and Design Considerations
    2. 7.2 UART and LIN Resources and Design Considerations
    3. 7.3 I2C and SPI Design Considerations
  11. GPIOs
    1. 8.1 GPIO Output Switching Speed and Load Capacitance
    2. 8.2 GPIO Current Sink and Source
    3. 8.3 Open-Drain GPIOs Enable 5V Communication Without a Level Shifter
    4. 8.4 Communicate With 1.8V Devices Without a Level Shifter
    5. 8.5 Unused Pins Connection
  12. Layout Guides
    1. 9.1 Power Supply Layout
    2. 9.2 Considerations for Ground Layout
      1. 9.2.1 What is Ground Noise?
    3. 9.3 Traces, Vias, and Other PCB Components
    4. 9.4 How to Select Board Layers and Recommended Stack-up
  13. 10Bootloader
  14. 11Summary
  15. 12References
  16. 13Revision History

GPIO Output Switching Speed and Load Capacitance

When using the GPIO as I/O, design considerations must be made to verify the correct operation. As load capacitance becomes larger, the rise/fall time of the I/O pin increases. This capacitance includes pin parasitic capacitance (Ci = 5pF (Typical)) and the effects of the board traces. I/O characteristics are available in the device-specific data sheet. Table 8-1 list the I/O output frequency characteristics of MSPM0C1103 and MSPM0C1104. And list the I/O output frequency characteristics of the MSPM0C1105 and MSPM0C1106.

Table 8-1 MSPM0C1103 and MSPM0C1104 GPIO Switching Characteristics
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fmax Port output frequency SDIO VDD ≥1.71V, CL = 20pF 24 MHz
ODIO VDD ≥1.71V, FM+, CL= 20pF to 100pF 1
tr,tf Output rise or fall time All output ports except ODIO VDD ≥ 1.71V 0.3* fmax s
tf Output fall time ODIO VDD ≥ 1.71V, FM+, CL= 20 pF to 100pF 20 × VDD / 5.5 120 ns
Table 8-2 MSPM0C1105 and MSPM0C1106 GPIO Switching Characteristics
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fmax Port output frequency SDIO VDD ≥ 1.71V, CL= 20pF 16 MHz
VDD ≥ 2.7V, CL= 20pF 32
ODIO VDD ≥ 1.71V, FM+ , CL= 20pF - 100pF 1
tr,tf Output rise/fall time SDIO VDD ≥ 1.71V, CL= 20pF 3.5 ns
SDIO VDD ≥ 2.7V, CL= 20pF 6.6 ns
tf Output fall time ODIO VDD ≥ 1.71V, FM+ , CL= 20pF-100pF 120 ns
Note:
  • The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
  • The output rise time of open-drain I/Os is determined by the pullup resistance and load capacitance.