SLAAEN4 March   2025 MSPM0G1106 , MSPM0G1107 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Bridge Between CAN and UART
  5. 2Implementation
    1. 2.1 Principle
    2. 2.2 Structure
  6. 3Software Description
    1. 3.1 Software Functionality
    2. 3.2 Configurable Parameters
    3. 3.3 Structure of Custom Element
    4. 3.4 Structure of FIFO
    5. 3.5 UART Receive and Transmit (Transparent Transmission)
    6. 3.6 UART Receive and Transmit (Protocol Transmission)
    7. 3.7 CAN Receive and Transmit
    8. 3.8 Application Integration
  7. 4Hardware
  8. 5Application Aspects
    1. 5.1 Flexible structure
    2. 5.2 Optional Configuration for CAN
    3. 5.3 CAN Bus Multi-Node Communication Example
  9. 6Summary
  10. 7References

Summary

This document introduce the implementation of CAN to UART bridge, including structure, function definition, interface usage and application aspects. With the example, MSPM0 can act like a translator between CAN and UART, allowing the user to send and receive information on one interface and receive and send the information on the other interface.