SLLA383A February   2018  – August 2022 SN65HVDA100-Q1 , SN65HVDA195-Q1 , TLIN1022-Q1 , TLIN1029-Q1 , TLIN2022-Q1 , TLIN2029-Q1 , TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 LIN Specification Progression
    2. 1.2 Workflow Concept
  4. 2Network Architecture
    1. 2.1 General Layout of the LIN Bus
    2. 2.2 Serial Communication Principles
    3. 2.3 Commander-Responder Principle
    4. 2.4 Message Frame Format
  5. 3Physical Layer Requirements
    1. 3.1 Bus Signaling Fundamentals
    2. 3.2 Pullup Values
    3. 3.3 Threshold Values
    4. 3.4 Bit-Rate Tolerance and Timing Requirements
    5. 3.5 Synchronization and Bit Sampling
    6. 3.6 Duty Cycle
  6. 4Filtering, Distance Limitations, Nodes on Bus
    1. 4.1 EMI and Signal Conditioning
    2. 4.2 ESD and Transients
    3. 4.3 Distance and Node Limitations
  7. 5LIN Transceiver Special Functions
    1. 5.1 Low-Power Modes
      1. 5.1.1 Sleep Mode
      2. 5.1.2 Standby Mode
    2. 5.2 Wakeup
      1. 5.2.1 Pin Wakeup
      2. 5.2.2 LIN Wakeup
      3. 5.2.3 Dominant Timeout
  8. 6Advantages and Disadvantages
  9. 7Conclusion
  10. 8Revision History

Introduction

The amount of electrical systems and components continue to grow as automobiles become more intelligent, safe, and comfortable. The growth of these components and systems demand a need for communication transceivers, to facilitate their interaction in the most advantageous way possible for manufacturers. LIN was developed to manage communication between these components and systems in an efficient and straightforward fashion, where the bandwidth and versatility of CAN was not needed; though in most instances, it is a sub-bus to the CAN bus.

Figure 1-1 High-Level Application Diagram