SLLA486A May   2020  – May 2021 ISO1042 , ISO1042-Q1 , ISO1044 , ISO1050 , ISOW1044

 

  1.   Trademarks
  2. When Do I Need to Isolate CAN?
  3. What are the Options Available to Isolate CAN Bus?
  4. Now That I Have Isolated CAN Signal Path, How Do I Generate Isolated Power?
  5. What’s the Reason Behind Terminating the Bus, Do I Need it, and How to Achieve it?
  6. What’s the Difference Between Common Mode Range and Bus Standoff Mentioned in Data Sheet?
  7. Now That I Have Taken Care of the Termination Resistor, What Other Components do I Need on the Bus Side?
  8. When Connecting Isolated CAN Nodes in a Network, What Should be Done with the Floating Bus-Side Ground Connection?
  9. Is There a Limitation on Minimum Data Rate That I Can Operate? What About the Maximum Data Rate Achievable in a Network?
  10. Is There a Limit on Maximum Number of Nodes That I Can Connect in CAN Network?
  11. 10What Factors Decide the Maximum Communication Distance in a CAN Network?
  12. 11What is the Maximum Value of Bus Capacitance That Can be Introduced Between CANH to GND and CANL to GND? Can Higher Capacitance Damage the Device?
  13. 12Is There a Way to Extend the Maximum Communication Distance?
  14. 13What is Stub Length? What are the Design Considerations Around it?
  15. 14I am Seeing Larger Differential CAN Voltage for Some Bits of CAN Packet Compared to Rest of the Packet When I am Communicating in a Network with Multiple Nodes Connected. Why?
  16. 15References
  17. 16Revision History

Is There a Way to Extend the Maximum Communication Distance?

The easiest method is to reduce the data rate to allow more time for signals to reach the farthest node. For a particular data rate required for an application, one way to extend the maximum communication distance is by installing a CAN repeater in series to overcome attenuation of signal caused by I*R drop of cable DC resistance. CAN repeater takes signal from CAN bus and replicates it on the other side of bus with higher signal swing. Another advantage of a repeater is that it allows for additional terminations to be used without overloading a single bus segment, which can be useful in operating with non-linear topologies. For more details, refer to the Isolated CAN Flexible Data (FD) Rate Repeater reference design.