SLLSEO9C March   2016  – August 2019 SN65DPHY440SS , SN75DPHY440SS

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Typical Application
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics, Power Supply
    6. 6.6 Electrical Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Switching Characteristics
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 HS Receive Equalization
      2. 7.3.2 HS TX Edge Rate Control
      3. 7.3.3 TX Voltage Swing and Pre-Emphasis Control
      4. 7.3.4 Dynamic De-skew
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 LP Mode
      3. 7.4.3 ULPS Mode
      4. 7.4.4 HS Mode
    5. 7.5 Register Maps
      1. 7.5.1  BIT Access Tag Conventions
      2. 7.5.2  Standard CSR Registers (address = 0x000 - 0x07)
        1. Table 6. Standard CSR Registers (0x000 - 0x07)
      3. 7.5.3  Standard CSR Register (address = 0x08)
        1. Table 7. Standard CSR Register (0x08)
      4. 7.5.4  Standard CSR Register (address = 0x09)
        1. Table 8. Standard CSR Register (0x09)
      5. 7.5.5  Standard CSR Register (address = 0x0A)
        1. Table 9. Standard CSR Register (0x0A)
      6. 7.5.6  Standard CSR Register (address = 0x0B)
        1. Table 10. Standard CSR Register (0x0B)
      7. 7.5.7  Standard CSR Register (address = 0x0D)
        1. Table 11. Standard CSR Register (0x0D)
      8. 7.5.8  Standard CSR Register (address = 0x0E)
        1. Table 12. Standard CSR Register (0x0E)
      9. 7.5.9  Standard CSR Register (address = 0x10) [reset = 0xFF]
        1. Table 13. Standard CSR Register (0x10)
      10. 7.5.10 Standard CSR Register (address = 0x11) [reset = 0xFF]
        1. Table 14. Standard CSR Register (0x11)
  8. Application and Implementation
    1. 8.1 Application Information,
    2. 8.2 Typical Application, CSI-2 Implementations
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Reset Implementation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Reset Implementation

The DPHY440 RSTN input gives control over the device reset and to place the device into low power mode. It is critical to reset the digital logic of the DPHY440 after the VCC supply is stable (that is, the power supply has reached the minimum recommended operating voltage). This is achieved by transitioning the RSTN input from a low level to a high level. A system may provide a control signal to the RSTN signal that transitions low to high after the power supply is (or supplies are) stable, or implement an external capacitor connected between RSTN and GND, to allow delaying the RSTN signal during power up. Both implementations are shown in Figure 19 and Figure 20.

SN65DPHY440SS SN75DPHY440SS ext_cpctr_cntrll_rstn_sllseo9.gifFigure 19. External Capacitor Controlled RSTN
SN65DPHY440SS SN75DPHY440SS rstn_input_act_cntrllr_sllseo9.gifFigure 20. RSTN Input from Active Controller

When implementing the external capacitor, the size of the external capacitor depends on the power up ramp of the VCC supply, where a slower ramp-up results in a larger value external capacitor.

Refer to the latest reference schematic for the DPHY440 device and/or consider approximately 200-nF capacitor as a reasonable first estimate for the size of the external capacitor.

When implementing an RSTN input from an active controller, it is recommended to use an open drain driver if the RSTN input is driven. This protects the RSTN input from damage of an input voltage greater than VCC.

SN65DPHY440SS SN75DPHY440SS power_up_timing_sllseo9.gifFigure 21. Power-Up Timing Requirements

Table 18. Timing Requirements

DESCRIPTION(1) MIN MAX
tD1 VCC stable before de-assertion of RSTN. 100 µs
tsu2 Setup of VSADJ_CFG0, PRE_CFG1, EQ and ERC pin before de-assertion of RSTN. 0
th2 Hold of VSADJ_CFG0, PRE_CFG1, EQ and ERC pin after de-assertion of RSTN. 250 µs
tVCC_RAMP VCC supply ramp requirements 0.2 ms 100 ms
Unused DAxP/N pins shall be tied to GND.