SLVAE57B February   2021  – October 2021 LM5050-1 , LM5050-2 , LM5051 , LM66100 , LM74202-Q1 , LM74500-Q1 , LM74610-Q1 , LM74700-Q1 , LM74720-Q1 , LM74721-Q1 , LM74722-Q1 , LM7480-Q1 , LM7481-Q1 , LM76202-Q1 , SM74611 , TPS2410 , TPS2411 , TPS2412 , TPS2413 , TPS2419

 

  1.   Trademarks
  2. Introduction
  3. Reverse Battery Protection
    1. 2.1 Reverse Battery Protection with Schottky Diode
  4. ORing Power Supplies
  5. Reverse Battery Protection using MOSFETs
    1. 4.1 Reverse Battery Protection using P-Channel MOSFET
    2. 4.2 Input Short or supply interruption
    3. 4.3 Diode Rectification During Line Disturbance
    4. 4.4 Reverse Battery Protection using N-Channel MOSFET
  6. Reverse Polarity Protection vs Reverse Current Blocking
    1. 5.1 Reverse Polarity Protection Controller vs. Ideal Diode Controller
    2. 5.2 Performance Comparison of P-Channel and Reverse Polarity Protection Controller Based Solution
  7. What is an Ideal Diode Controller?
    1. 6.1 Linear Regulation Control Vs Hysteretic ON/OFF Control
    2. 6.2 Low Forward Conduction Loss
    3. 6.3 Fast Reverse Recovery
    4. 6.4 Very Low Shutdown Current
    5. 6.5 Fast Load Transient Response
    6. 6.6 Additional Features in Ideal Diode Controllers
      1. 6.6.1 Back-to-Back FET Driving Ideal Diode Controllers
      2. 6.6.2 Very Low Quiescent Current
      3. 6.6.3 TVSless Operation
  8. Automotive Transient protection with Ideal Diode Controllers
    1. 7.1 LM74700-Q1 with N-Channel MOSFET
    2. 7.2 Static Reverse Polarity
    3. 7.3 Dynamic Reverse Polarity
    4. 7.4 Input Micro-Short
    5. 7.5 Diode Rectification of Supply Line disturbance
  9. ORing Power Supplies with Ideal Diode Controllers
  10. Integrated Ideal Diode Solution
  11. 10Summary
  12. 11References
  13. 12Revision History

Reverse Polarity Protection Controller vs. Ideal Diode Controller

A reverse polarity protection controller when paired with an external N-channel MOSFET provides a low loss protection against input supply reversal. Reverse polarity protection controller does not provide reverse current blocking and is suitable for applications which need protection against input polarity reversal only.

An ideal diode controller when paired with an external N-channel MOSFET provides a low loss protection against both input supply reversal as well as reverse current flowing from output loads back to the input. Ideal diode controller is suitable for applications which need both input reverse polarity protection as well as reverse current blocking.

Figure 5-1 provides an overview of typical application use cases of reverse polarity protection controller and ideal diode controller. Typically for applications where output loads are DC/DC converters, voltage regulator followed by MCU/processors (Logic paths), input reverse polarity protection and reverse current blocking feature is required. For reverse polarity protection solution of the logic path ideal diode controller such as LM74700-Q1 is a suitable device.

For the input reverse polarity protection of loads which can potentially deliver energy back to the input supply such as Body Control Module (BCM) load driving paths, input reverse polarity protection is required but reverse current blocking is not a must have feature. For reverse polarity protection of similar applications , a reverse polarity protection controller such as LM74500-Q1 is a suitable device.

GUID-20201215-CA0I-0D3R-MC5S-96FPTDDJGKL8-low.gifFigure 5-1 Typical Application Use Case of Reverse Polarity Protection Controller and Ideal Diode Controller