SNVS478G January   2007  – April 2025 LM5574

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 High Voltage Start-Up Regulator
      2. 6.3.2 Oscillator and Sync Capability
      3. 6.3.3 Error Amplifier and PWM Comparator
      4. 6.3.4 Ramp Generator
      5. 6.3.5 Maximum Duty Cycle, Input Dropout Voltage
      6. 6.3.6 Current Limit
      7. 6.3.7 Soft Start
      8. 6.3.8 Boost Pin
      9. 6.3.9 Thermal Protection
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1  Custom Design With WEBENCH® Tools
        2. 7.2.2.2  External Components
        3. 7.2.2.3  R3 (R)T
        4. 7.2.2.4  L1-Inductor
        5. 7.2.2.5  C3 (C)RAMP
        6. 7.2.2.6  C9-Output Capacitor
        7. 7.2.2.7  D1-Async Diode
        8. 7.2.2.8  C1-Input Capacitor
        9. 7.2.2.9  C8-VCC Capacitor
        10. 7.2.2.10 C7-BST Capacitor
        11. 7.2.2.11 C4- SS Capacitor
        12. 7.2.2.12 R5, R6- Feedback Resistors
        13. 7.2.2.13 R1, R2, C2-SD Pin Components
        14. 7.2.2.14 R4, C5, C6-Compensation Components
        15. 7.2.2.15 Bias Power Dissipation Reduction
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Power Dissipation
      4. 7.4.4 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
      2. 8.1.2 Development Support
        1. 8.1.2.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Maximum Duty Cycle, Input Dropout Voltage

There is a forced off-time of 500ns implemented each cycle to make sure of sufficient time for the diode current to be sampled. This forced off-time limits the maximum duty cycle of the buck switch. The maximum duty cycle varies with the operating frequency.

Equation 5. DMAX = 1 – Fs × 500ns

where

  • Fs is the oscillator frequency.

Limiting the maximum duty cycle raises the input dropout voltage. The input dropout voltage is the lowest input voltage required to maintain regulation of the output voltage. Use Equation 6 to calculate an approximation of the input dropout voltage is:

Equation 6. LM5574

where

  • VD is the voltage drop across the re-circulatory diode.

Operating at high switching frequency raises the minimum input voltage necessary to maintain regulation.