SNVSB66A July   2018  – October 2021 TPS3431

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Enable Input (EN) and Enable Output (ENOUT)
      2. 7.3.2 Watchdog Mode
        1. 7.3.2.1 CWD
        2. 7.3.2.2 Watchdog Input WDI
        3. 7.3.2.3 Watchdog Output WDO
        4. 7.3.2.4 SET1
    4. 7.4 Device Functional Modes
      1. 7.4.1 VDD is Below VPOR ( VDD < VPOR)
      2. 7.4.2 Above Power-On-Reset, But Less Than VDD(min) (VPOR ≤ VDD < VDD(min))
      3. 7.4.3 Normal Operation (VDD ≥ VDD(min))
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 CWD Functionality
        1. 8.1.1.1 Factory-Programmed Timing Options
        2. 8.1.1.2 CWD Adjustable Capacitor Watchdog Timeout
    2. 8.2 Typical Application
      1. 8.2.1 Design 1 Requirements
      2. 8.2.2 Detailed Design 1 Procedure
        1. 8.2.2.1 Calculating WDO Pullup Resistor Design 1
        2. 8.2.2.2 Setting the Watchdog Design 1
      3. 8.2.3 Application Curves Design 1
    3. 8.3 Programmable Application
      1. 8.3.1 Design 2 Requirements
      2. 8.3.2 Detailed Design 2 Procedure
        1. 8.3.2.1 Calculating WDO Pullup Resistor Design 2
        2. 8.3.2.2 Setting the Watchdog Design 2
        3. 8.3.2.3 Watchdog Disabled During Initialization Period Design 2
        4. 8.3.2.4 Programmable Disable Feature Design 2
      3. 8.3.3 Application Curves Design 2
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Setting the Watchdog Design 2

As illustrated in Figure 8-1 there are three options for setting the watchdog timer. The design specifications in this application require the programmable timing option (external capacitor connected to CWD). When a capacitor is connected to the CWD pin, the watchdog timer is governed by Equation 1. This equation estimation is only valid for ideal capacitors and any temperature or voltage derating must be accounted for separately.

Equation 2. CCWD (nF) = (tWD(ms) – 55) / 77.4 = (265 – 55) / 77.4 = 2.71 nF

The nearest standard capacitor value is 2.7 nF. Selecting 2.7 nF for the CCWD capacitor gives the following minimum and maximum timing parameters:

Equation 3. tWD(MIN) = 0.905 x tWD(TYP) = 0.905 x (77.4 x 2.7 + 55) = 238.902 ms
Equation 4. tWD(MAX) = 1.095 x tWD(TYP) = 1.095x (77.4 x 2.7 + 55) = 289.058 ms

Capacitor tolerance also influences tWD(MIN) and tWD(MAX). Select a ceramic COG dielectric capacitor for high accuracy. For 2.7 nF, COG capacitors are readily available with 5% tolerances. This selection results in a 5% decrease in tWD(MIN) and a 5% increase in tWD(MAX), giving 213.16 ms and 318.75 ms, respectively. To ensure proper functionality, a falling edge must be issued before tWD(min). Figure 8-8 illustrates that a WDI signal with a period of 260 ms keeps WDO from asserting.