SPRU514Y August   2001  – June 2022

 

  1.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Related Documentation
    4.     Related Documentation From Texas Instruments
    5.     Trademarks
  2. Introduction to the Software Development Tools
    1. 1.1 Software Development Tools Overview
    2. 1.2 Compiler Interface
    3. 1.3 ANSI/ISO Standard
    4. 1.4 Output Files
    5. 1.5 Utilities
  3. Using the C/C++ Compiler
    1. 2.1  About the Compiler
    2. 2.2  Invoking the C/C++ Compiler
    3. 2.3  Changing the Compiler's Behavior with Options
      1. 2.3.1  Linker Options
      2. 2.3.2  Frequently Used Options
      3. 2.3.3  Miscellaneous Useful Options
      4. 2.3.4  Run-Time Model Options
      5. 2.3.5  Symbolic Debugging and Profiling Options
      6. 2.3.6  Specifying Filenames
      7. 2.3.7  Changing How the Compiler Interprets Filenames
      8. 2.3.8  Changing How the Compiler Processes C Files
      9. 2.3.9  Changing How the Compiler Interprets and Names Extensions
      10. 2.3.10 Specifying Directories
      11. 2.3.11 Assembler Options
      12. 2.3.12 Deprecated Options
    4. 2.4  Controlling the Compiler Through Environment Variables
      1. 2.4.1 Setting Default Compiler Options (C2000_C_OPTION)
      2. 2.4.2 Naming One or More Alternate Directories (C2000_C_DIR)
    5. 2.5  Controlling the Preprocessor
      1. 2.5.1  Predefined Macro Names
      2. 2.5.2  The Search Path for #include Files
        1. 2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)
      3. 2.5.3  Support for the #warning and #warn Directives
      4. 2.5.4  Generating a Preprocessed Listing File (--preproc_only Option)
      5. 2.5.5  Continuing Compilation After Preprocessing (--preproc_with_compile Option)
      6. 2.5.6  Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
      7. 2.5.7  Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
      8. 2.5.8  Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
      9. 2.5.9  Generating a List of Files Included with #include (--preproc_includes Option)
      10. 2.5.10 Generating a List of Macros in a File (--preproc_macros Option)
    6. 2.6  Passing Arguments to main()
    7. 2.7  Understanding Diagnostic Messages
      1. 2.7.1 Controlling Diagnostic Messages
      2. 2.7.2 How You Can Use Diagnostic Suppression Options
    8. 2.8  Other Messages
    9. 2.9  Generating Cross-Reference Listing Information (--gen_cross_reference_listing Option)
    10. 2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
    11. 2.11 Using Inline Function Expansion
      1. 2.11.1 Inlining Intrinsic Operators
      2. 2.11.2 Inlining Restrictions
      3. 2.11.3 Unguarded Definition-Controlled Inlining
        1. 2.11.3.1 Using the Inline Keyword
      4. 2.11.4 Guarded Inlining and the _INLINE Preprocessor Symbol
        1. 2.11.4.1 Header File string.h
        2. 2.11.4.2 Library Definition File
    12. 2.12 Using Interlist
    13. 2.13 About the Application Binary Interface
    14. 2.14 Enabling Entry Hook and Exit Hook Functions
    15. 2.15 Live Firmware Update (LFU)
  4. Optimizing Your Code
    1. 3.1  Invoking Optimization
    2. 3.2  Controlling Code Size Versus Speed
    3. 3.3  Performing File-Level Optimization (--opt_level=3 option)
      1. 3.3.1 Creating an Optimization Information File (--gen_opt_info Option)
    4. 3.4  Program-Level Optimization (--program_level_compile and --opt_level=3 options)
      1. 3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)
      2. 3.4.2 Optimization Considerations When Mixing C/C++ and Assembly
    5. 3.5  Automatic Inline Expansion (--auto_inline Option)
    6. 3.6  Link-Time Optimization (--opt_level=4 Option)
      1. 3.6.1 Option Handling
      2. 3.6.2 Incompatible Types
    7. 3.7  Using Feedback Directed Optimization
      1. 3.7.1 Feedback Directed Optimization
        1. 3.7.1.1 Phase 1 -- Collect Program Profile Information
        2. 3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization
        3. 3.7.1.3 Generating and Using Profile Information
        4. 3.7.1.4 Example Use of Feedback Directed Optimization
        5. 3.7.1.5 The .ppdata Section
        6. 3.7.1.6 Feedback Directed Optimization and Code Size Tune
        7. 3.7.1.7 Instrumented Program Execution Overhead
        8. 3.7.1.8 Invalid Profile Data
      2. 3.7.2 Profile Data Decoder
      3. 3.7.3 Feedback Directed Optimization API
      4. 3.7.4 Feedback Directed Optimization Summary
    8. 3.8  Using Profile Information to Analyze Code Coverage
      1. 3.8.1 Code Coverage
        1. 3.8.1.1 Phase1 -- Collect Program Profile Information
        2. 3.8.1.2 Phase 2 -- Generate Code Coverage Reports
      2. 3.8.2 Related Features and Capabilities
        1. 3.8.2.1 Path Profiler
        2. 3.8.2.2 Analysis Options
        3. 3.8.2.3 Environment Variables
    9. 3.9  Special Considerations When Using Optimization
      1. 3.9.1 Use Caution With asm Statements in Optimized Code
      2. 3.9.2 Use the Volatile Keyword for Necessary Memory Accesses
        1. 3.9.2.1 Use Caution When Accessing Aliased Variables
        2. 3.9.2.2 Use the --aliased_variables Option to Indicate That the Following Technique Is Used
        3. 3.9.2.3 On FPU Targets Only: Use restrict Keyword to Indicate That Pointers Are Not Aliased
          1. 3.9.2.3.1 Use of the restrict Type Qualifier With Pointers
          2. 3.9.2.3.2 Use of the restrict Type Qualifier With Pointers
    10. 3.10 Using the Interlist Feature With Optimization
    11. 3.11 Data Page (DP) Pointer Load Optimization
    12. 3.12 Debugging and Profiling Optimized Code
      1. 3.12.1 Profiling Optimized Code
    13. 3.13 Increasing Code-Size Optimizations (--opt_for_space Option)
      1. 3.13.1 C Code to Show Code-Size Optimizations
      2. 3.13.2 Section 1 Compiled With the --opt_for_space Option
    14. 3.14 Compiler Support for Re-Entrant VCU Code
    15. 3.15 Compiler Support for Generating DMAC Instructions
      1. 3.15.1 Automatic Generation of DMAC Instructions
      2. 3.15.2 Assertions to Specify Data Address Alignment
      3. 3.15.3 __dmac Intrinsic
    16. 3.16 What Kind of Optimization Is Being Performed?
      1. 3.16.1  Cost-Based Register Allocation
      2. 3.16.2  Alias Disambiguation
      3. 3.16.3  Branch Optimizations and Control-Flow Simplification
      4. 3.16.4  Data Flow Optimizations
      5. 3.16.5  Expression Simplification
      6. 3.16.6  Inline Expansion of Functions
      7. 3.16.7  Function Symbol Aliasing
      8. 3.16.8  Induction Variables and Strength Reduction
      9. 3.16.9  Loop-Invariant Code Motion
      10. 3.16.10 Loop Rotation
      11. 3.16.11 Instruction Scheduling
      12. 3.16.12 Register Variables
      13. 3.16.13 Register Tracking/Targeting
      14. 3.16.14 Tail Merging
      15. 3.16.15 Autoincrement Addressing
      16. 3.16.16 Removing Comparisons to Zero
      17. 3.16.17 RPTB Generation (for FPU Targets Only)
  5. Linking C/C++ Code
    1. 4.1 Invoking the Linker Through the Compiler (-z Option)
      1. 4.1.1 Invoking the Linker Separately
      2. 4.1.2 Invoking the Linker as Part of the Compile Step
      3. 4.1.3 Disabling the Linker (--compile_only Compiler Option)
    2. 4.2 Linker Code Optimizations
      1. 4.2.1 Generating Function Subsections (--gen_func_subsections Compiler Option)
      2. 4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)
    3. 4.3 Controlling the Linking Process
      1. 4.3.1 Including the Run-Time-Support Library
        1. 4.3.1.1 Automatic Run-Time-Support Library Selection
          1. 4.3.1.1.1 Using the --issue_remarks Option
        2. 4.3.1.2 Manual Run-Time-Support Library Selection
        3. 4.3.1.3 Library Order for Searching for Symbols
      2. 4.3.2 Run-Time Initialization
      3. 4.3.3 Initialization by the Interrupt Vector
      4. 4.3.4 Global Object Constructors
      5. 4.3.5 Specifying the Type of Global Variable Initialization
      6. 4.3.6 Specifying Where to Allocate Sections in Memory
      7. 4.3.7 A Sample Linker Command File
    4. 4.4 Linking C28x and C2XLP Code
  6. Post-Link Optimizer
    1. 5.1 The Post-Link Optimizer’s Role in the Software Development Flow
    2. 5.2 Removing Redundant DP Loads
    3. 5.3 Tracking DP Values Across Branches
    4. 5.4 Tracking DP Values Across Function Calls
    5. 5.5 Other Post-Link Optimizations
    6. 5.6 Controlling Post-Link Optimizations
      1. 5.6.1 Excluding Files (-ex Option)
      2. 5.6.2 Controlling Post-Link Optimization Within an Assembly File
      3. 5.6.3 Retaining Post-Link Optimizer Output (--keep_asm Option)
      4. 5.6.4 Disable Optimization Across Function Calls (-nf Option )
      5. 5.6.5 Annotating Assembly with Advice (--plink_advice_only option)
    7. 5.7 Restrictions on Using the Post-Link Optimizer
    8. 5.8 Naming the Outfile (--output_file Option)
  7. C/C++ Language Implementation
    1. 6.1  Characteristics of TMS320C28x C
      1. 6.1.1 Implementation-Defined Behavior
    2. 6.2  Characteristics of TMS320C28x C++
    3. 6.3  Data Types
      1. 6.3.1 Size of Enum Types
      2. 6.3.2 Support for 64-Bit Integers
      3. 6.3.3 C28x double and long double Floating-Point Types
    4. 6.4  File Encodings and Character Sets
    5. 6.5  Keywords
      1. 6.5.1 The const Keyword
      2. 6.5.2 The __cregister Keyword
      3. 6.5.3 The __interrupt Keyword
      4. 6.5.4 The restrict Keyword
      5. 6.5.5 The volatile Keyword
    6. 6.6  C++ Exception Handling
    7. 6.7  Register Variables and Parameters
    8. 6.8  The __asm Statement
    9. 6.9  Pragma Directives
      1. 6.9.1  The CALLS Pragma
      2. 6.9.2  The CLINK Pragma
      3. 6.9.3  The CODE_ALIGN Pragma
      4. 6.9.4  The CODE_SECTION Pragma
      5. 6.9.5  The DATA_ALIGN Pragma
      6. 6.9.6  The DATA_SECTION Pragma
        1. 6.9.6.1 Using the DATA_SECTION Pragma C Source File
        2. 6.9.6.2 Using the DATA_SECTION Pragma C++ Source File
        3. 6.9.6.3 Using the DATA_SECTION Pragma Assembly Source File
      7. 6.9.7  The Diagnostic Message Pragmas
      8. 6.9.8  The FAST_FUNC_CALL Pragma
      9. 6.9.9  The FORCEINLINE Pragma
      10. 6.9.10 The FORCEINLINE_RECURSIVE Pragma
      11. 6.9.11 The FUNC_ALWAYS_INLINE Pragma
      12. 6.9.12 The FUNC_CANNOT_INLINE Pragma
      13. 6.9.13 The FUNC_EXT_CALLED Pragma
      14. 6.9.14 The FUNCTION_OPTIONS Pragma
      15. 6.9.15 The INTERRUPT Pragma
      16. 6.9.16 The LOCATION Pragma
      17. 6.9.17 The MUST_ITERATE Pragma
        1. 6.9.17.1 The MUST_ITERATE Pragma Syntax
        2. 6.9.17.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops
      18. 6.9.18 The NOINIT and PERSISTENT Pragmas
      19. 6.9.19 The NOINLINE Pragma
      20. 6.9.20 The NO_HOOKS Pragma
      21. 6.9.21 The once Pragma
      22. 6.9.22 The RETAIN Pragma
      23. 6.9.23 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
      24. 6.9.24 The UNROLL Pragma
      25. 6.9.25 The WEAK Pragma
    10. 6.10 The _Pragma Operator
    11. 6.11 Application Binary Interface
    12. 6.12 Object File Symbol Naming Conventions (Linknames)
    13. 6.13 Initializing Static and Global Variables in COFF ABI Mode
      1. 6.13.1 Initializing Static and Global Variables With the Linker
      2. 6.13.2 Initializing Static and Global Variables With the const Type Qualifier
    14. 6.14 Changing the ANSI/ISO C/C++ Language Mode
      1. 6.14.1 C99 Support (--c99)
      2. 6.14.2 C11 Support (--c11)
      3. 6.14.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)
    15. 6.15 GNU and Clang Language Extensions
      1. 6.15.1 Extensions
      2. 6.15.2 Function Attributes
      3. 6.15.3 For Loop Attributes
      4. 6.15.4 Variable Attributes
      5. 6.15.5 Type Attributes
      6. 6.15.6 Built-In Functions
      7. 6.15.7 Using the Byte Peripheral Type Attribute
    16. 6.16 Compiler Limits
  8. Run-Time Environment
    1. 7.1  Memory Model
      1. 7.1.1 Sections
      2. 7.1.2 C/C++ System Stack
      3. 7.1.3 Allocating .econst to Program Memory
      4. 7.1.4 Dynamic Memory Allocation
      5. 7.1.5 Initialization of Variables
      6. 7.1.6 Allocating Memory for Static and Global Variables
      7. 7.1.7 Field/Structure Alignment
      8. 7.1.8 Character String Constants
    2. 7.2  Register Conventions
      1. 7.2.1 TMS320C28x Register Use and Preservation
      2. 7.2.2 Status Registers
    3. 7.3  Function Structure and Calling Conventions
      1. 7.3.1 How a Function Makes a Call
      2. 7.3.2 How a Called Function Responds
      3. 7.3.3 Special Case for a Called Function (Large Frames)
      4. 7.3.4 Accessing Arguments and Local Variables
      5. 7.3.5 Allocating the Frame and Accessing 32-Bit Values in Memory
    4. 7.4  Accessing Linker Symbols in C and C++
    5. 7.5  Interfacing C and C++ With Assembly Language
      1. 7.5.1 Using Assembly Language Modules With C/C++ Code
      2. 7.5.2 Accessing Assembly Language Functions From C/C++
        1. 7.5.2.1 Calling an Assembly Language Function From a C/C++ Program
        2. 7.5.2.2 Assembly Language Program Called by Section 1
        3.       262
      3. 7.5.3 Accessing Assembly Language Variables From C/C++
        1. 7.5.3.1 Accessing Assembly Language Global Variables
          1. 7.5.3.1.1 Assembly Language Variable Program
          2. 7.5.3.1.2 C Program to Access Assembly Language From Section 1
        2.       267
        3. 7.5.3.2 Accessing Assembly Language Constants
          1. 7.5.3.2.1 Accessing an Assembly Language Constant From C
          2. 7.5.3.2.2 Assembly Language Program for Section 1
          3.        271
      4. 7.5.4 Sharing C/C++ Header Files With Assembly Source
      5. 7.5.5 Using Inline Assembly Language
    6. 7.6  Using Intrinsics to Access Assembly Language Statements
      1. 7.6.1 Floating Point Conversion Intrinsics
      2. 7.6.2 Floating Point Unit (FPU) Intrinsics
      3. 7.6.3 Trigonometric Math Unit (TMU) Intrinsics
      4. 7.6.4 Fast Integer Division Intrinsics
    7. 7.7  Interrupt Handling
      1. 7.7.1 General Points About Interrupts
      2. 7.7.2 Using C/C++ Interrupt Routines
        1.       282
    8. 7.8  Integer Expression Analysis
      1. 7.8.1 Operations Evaluated With Run-Time-Support Calls
      2. 7.8.2 Division Operations with Fast Integer Division Support
      3. 7.8.3 C/C++ Code Access to the Upper 16 Bits of 16-Bit Multiply
    9. 7.9  Floating-Point Expression Analysis
    10. 7.10 System Initialization
      1. 7.10.1 Boot Hook Functions for System Pre-Initialization
      2. 7.10.2 Run-Time Stack
      3. 7.10.3 Automatic Initialization of Variables for COFF
        1. 7.10.3.1 Initialization Tables
        2.       293
        3. 7.10.3.2 Autoinitialization of Variables at Run Time for COFF
        4. 7.10.3.3 Initialization of Variables at Load Time for COFF
        5. 7.10.3.4 Global Constructors
      4. 7.10.4 Automatic Initialization of Variables for EABI
        1. 7.10.4.1 Zero Initializing Variables
        2. 7.10.4.2 Direct Initialization for EABI
        3. 7.10.4.3 Autoinitialization of Variables at Run Time for EABI
        4. 7.10.4.4 Autoinitialization Tables for EABI
          1. 7.10.4.4.1 Length Followed by Data Format
          2. 7.10.4.4.2 Zero Initialization Format
          3. 7.10.4.4.3 Run Length Encoded (RLE) Format
          4. 7.10.4.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format
        5. 7.10.4.5 Initialization of Variables at Load Time
        6. 7.10.4.6 Global Constructors
  9. Using Run-Time-Support Functions and Building Libraries
    1. 8.1 C and C++ Run-Time Support Libraries
      1. 8.1.1 Linking Code With the Object Library
      2. 8.1.2 Header Files
      3. 8.1.3 Modifying a Library Function
      4. 8.1.4 Support for String Handling
      5. 8.1.5 Minimal Support for Internationalization
      6. 8.1.6 Support for Time and Clock Functions
      7. 8.1.7 Allowable Number of Open Files
      8. 8.1.8 Library Naming Conventions
    2. 8.2 The C I/O Functions
      1. 8.2.1 High-Level I/O Functions
        1. 8.2.1.1 Formatting and the Format Conversion Buffer
      2. 8.2.2 Overview of Low-Level I/O Implementation
        1.       open
        2.       close
        3.       read
        4.       write
        5.       lseek
        6.       unlink
        7.       rename
      3. 8.2.3 Device-Driver Level I/O Functions
        1.       DEV_open
        2.       DEV_close
        3.       DEV_read
        4.       DEV_write
        5.       DEV_lseek
        6.       DEV_unlink
        7.       DEV_rename
      4. 8.2.4 Adding a User-Defined Device Driver for C I/O
        1. 8.2.4.1 Mapping Default Streams to Device
      5. 8.2.5 The device Prefix
        1.       add_device
        2.       341
        3. 8.2.5.1 Program for C I/O Device
    3. 8.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
    4. 8.4 Reinitializing Variables During a Warm Start
    5. 8.5 Library-Build Process
      1. 8.5.1 Required Non-Texas Instruments Software
      2. 8.5.2 Using the Library-Build Process
        1. 8.5.2.1 Automatic Standard Library Rebuilding by the Linker
        2. 8.5.2.2 Invoking mklib Manually
          1. 8.5.2.2.1 Building Standard Libraries
          2. 8.5.2.2.2 Shared or Read-Only Library Directory
          3. 8.5.2.2.3 Building Libraries With Custom Options
          4. 8.5.2.2.4 The mklib Program Option Summary
      3. 8.5.3 Extending mklib
        1. 8.5.3.1 Underlying Mechanism
        2. 8.5.3.2 Libraries From Other Vendors
  10. C++ Name Demangler
    1. 9.1 Invoking the C++ Name Demangler
    2. 9.2 Sample Usage of the C++ Name Demangler
  11. 10CLA Compiler
    1. 10.1 How to Invoke the CLA Compiler
      1. 10.1.1 CLA-Specific Options
    2. 10.2 CLA C Language Implementation
      1. 10.2.1 Variables and Data Types
      2. 10.2.2 Pragmas, Keywords, and Intrinsics
      3. 10.2.3 Optimizations with the CLA Compiler
      4. 10.2.4 C Language Restrictions
      5. 10.2.5 Memory Model - Sections
      6. 10.2.6 Function Structure and Calling Conventions
  12.   A Glossary
    1.     A.1 Terminology
  13.   B Revision History
  14.   373
  15.   374
  16.   375
  17.   376
  18.   B Earlier Revisions

Changing the Compiler's Behavior with Options

Options control the operation of the compiler. This section provides a description of option conventions and an option summary table. It also provides detailed descriptions of the most frequently used options, including options used for type-checking and assembling.

For a help screen summary of the options, enter cl2000 with no parameters on the command line.

The following apply to the compiler options:

  • There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix and is usually a more descriptive name. The "short form" uses a single hyphen prefix and a combination of letters and numbers that are not always intuitive.
  • Options are usually case sensitive.
  • Individual options cannot be combined.
  • An option with a parameter should be specified with an equal sign before the parameter to clearly associate the parameter with the option. For example, the option to undefine a constant can be expressed as --undefine=name. Likewise, the option to specify the maximum amount of optimization can be expressed as -O=3. You can also specify a parameter directly after certain options, for example -O3 is the same as -O=3. No space is allowed between the option and the optional parameter, so -O 3 is not accepted.
  • Files and options except the --run_linker option can occur in any order. The --run_linker option must follow all compiler options and precede any linker options.

You can define default options for the compiler by using the C2000_C_OPTION environment variable. For a detailed description of the environment variable, see Section 3.5.1.

Table 3-6 through Table 3-28 summarize all options (including link options). Use the references in the tables for more complete descriptions of the options.

Table 2-1 Processor Options
Option Alias Effect Section
--silicon_version=28 -v28 Specifies TMS320C28x architecture. The default (and only value accepted) is 28. This option is no longer required. Section 3.4.4
--abi={coffabi|eabi} Selects application binary interface. Default is coffabi. Support is also provided for eabi. Section 3.4.4
--cla_support[=cla0|cla1|cla2] Specifies TMS320C28x CLA accelerator support for Type 0, Type 1, or Type 2. Default is cla0. Use this option only if the target hardware provides this functionality. Section 3.4.4
--float_support={ fpu32 | fpu64 | softlib } Specifies use of TMS320C28x 32-bit or 64-bit hardware floating-point support. The default is softlib. Use this option only if the target hardware provides this functionality. Section 3.4.4
--idiv_support={none | idiv0} Enables support for fast integer division using hardware extensions to provide a set of instructions to accelerate integral division for 16-, 32-, and 64-bit values. If this hardware is available, use --idiv_support=idiv0 to cause these instructions to be used. Use this option only if the target hardware provides this functionality. The default is none. (EABI only) Section 3.4.4
--lfu_reference_elf=path -lfu=path In order to create a Live Firmware Update (LFU) compatible executable binary, specify the path to a previous ELF executable binary to use as a reference from which to obtain a list of the memory addresses of global and static symbols. This previous binary may be an LFU-compatible binary, but this is not required. (LFU is supported for EABI only) Section 3.16
-lfu_default[=none | preserve] Specify the default treatment of global and static symbol addresses found in the reference ELF executable if they do not have the update or preserve attribute in the new executable. These treatments are used during a live firmware upate ("warm start").

    If --lfu_default=preserve (the default), the compiler preserves all global and static symbol addresses found in the reference ELF executable unless __attribute__((update)) is specified for a symbol.

    If --lfu_default=none, the compiler preserves only the addresses of symbols that have __attribute__((preserve)) specified. It re-initializes symbols that have __attribute__((update)) specified. All other global and static symbols can be allocated to any memory address by the linker, but are not re-initialized when a warm start occurs.

    (LFU is supported for EABI only)

Section 3.16
--silicon_errata_fpu1_workaround
=on|off
Enabling this option prevents FPU register write conflicts that can occur during certain instructions. The compiler adds NOP instructions before such instructions to prevent conflicts. Use this option only if the target hardware provides FPU functionality. Section 3.4.4
--tmu_support[=tmu0 | tmu1] Enables support for the Trigonometric Math Unit (TMU). Using this option also enables FPU32 support (as with --float_support=fpu32). If this option is used but no value is specified, the default is tmu0. The tmu1 option enables support for all tmu0 functionality plus the LOG2F32 and IEXP2F32 instructions. Use this option only if the target hardware provides this functionality. (TMU1 is supported for EABI only.) Section 3.4.4
--vcu_support[=vcu0|vcu2|vcrc] Specifies C28x VCU coprocessor support Type 0, Type 2, or VCRC. Use this option only if the target hardware provides this functionality. Default is vcu0. Section 3.4.4
--unified_memory -mt Generates code for the unified memory model. Section 3.4.4
Table 2-2 Optimization Options(1)
Option Alias Effect Section
--opt_level=off Disables all optimization (default). Section 4.2
--opt_level=n -On Level 0 (-O0) optimizes register usage only .
Level 1 (-O1) uses Level 0 optimizations and optimizes locally.
Level 2 (-O2) uses Level 1 optimizations and optimizes globally .
Level 3 (-O3) uses Level 2 optimizations and optimizes the file.
Level 4 (-O4) uses Level 3 optimizations and performs link-time optimization.
Section 4.2, Section 4.4, Section 4.7
--opt_for_space=n -ms Controls code size on four levels (0, 1, 2, and 3). Section 4.14
--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this option is specified without n, the default value is 4. If this option is not specified, the default setting is 2. Section 4.3
Note: Machine-specific options (see Table 3-12) can also affect optimization.
Table 2-3 Advanced Optimization Options(1)
Option Alias Effect Section
--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not specified, the default is 1. Section 4.6
--call_assumptions=n -opn Level 0 (-op0) specifies that the module contains functions and variables that are called or modified from outside the source code provided to the compiler.
Level 1 (-op1) specifies that the module contains variables modified from outside the source code provided to the compiler but does not use functions called from outside the source code.
Level 2 (-op2) specifies that the module contains no functions or variables that are called or modified from outside the source code provided to the compiler (default).
Level 3 (-op3) specifies that the module contains functions that are called from outside the source code provided to the compiler but does not use variables modified from outside the source code.
Section 4.5.1
--disable_inlining Prevents any inlining from occurring. Section 3.12
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode. Section 3.4.3
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. Section 3.4.3
--fp_single_precision_constant Causes all unsuffixed floating-point constants to be treated as single precision values instead of as double-precision constants. Section 3.4.3
--gen_opt_info=n -onn Level 0 (-on0) disables the optimization information file.
Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.
Section 4.4.1
--isr_save_vcu_regs={on|off} Generates VCU register save/restore to stack for interrupt routines so that VCU code can be re-entrant. Section 4.15
--optimizer_interlist -os Interlists optimizer comments with assembly statements. Section 4.11
--program_level_compile -pm Combines source files to perform program-level optimization. Section 4.5
--sat_reassoc={on|off} Enables or disables the reassociation of saturating arithmetic. Default is --sat_reassoc=off. Section 3.4.3
--aliased_variables -ma Notifies the compiler that addresses passed to functions may be modified by an alias in the called function. Section 4.10.2.2
Note: Machine-specific options (see Table 3-12) can also affect optimization.
Table 2-4 Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation of debug information does not impact optimization. Therefore, generating debug information is enabled by default. Section 3.4.5
Section 4.13
--symdebug:dwarf_version=2|3|4 Specifies the DWARF format version. The default version is 3 for the COFF ABI and 4 for EABI. Section 3.4.5
--symdebug:none Disables all symbolic debugging. Section 3.4.5
Section 4.13
--symdebug:profile_coff Enables profiling using the alternate STABS debugging format. STABS is supported only for the COFF ABI. Section 3.4.5
--symdebug:skeletal (Deprecated; has no effect.)
Table 2-5 Include Options
Option Alias Effect Section
--include_path=directory -I Adds the specified directory to the #include search path. Section 3.6.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 3.4.3
Table 2-6 Control Options
Option Alias Effect Section
--compile_only -c Disables linking (negates --run_linker). Section 5.2.3
--help -h Prints (on the standard output device) a description of the options understood by the compiler. Section 3.4.2
--run_linker -z Causes the linker to be invoked from the compiler command line. Section 3.4.2
--skip_assembler -n Compiles C/C++ source file , producing an assembly language output file. The assembler is not run and no object file is produced. Section 3.4.2
Table 2-7 Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 7.15
--c99 Processes C files according to the ISO C99 standard. Section 7.15
--c11 Processes C files according to the ISO C11 standard. Section 7.15
--c++03 Processes C++ files according to the ISO C++03 standard. Section 7.15
--cla_default Processes both .c and .cla files as CLA files. Section 11.2.1
--cla_signed_compare_workaround ={on|off} Enables automatic use of floating-point comparisons when compiling CLA comparisons that may result in incorrect answers if integer comparison is used. Off by default. Section 11.2.1
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 3.4.7
--exceptions Enables C++ exception handling. Section 7.7
--extern_c_can_throw Allow extern C functions to propagate exceptions. (EABI only) --
--float_operations_allowed
={none|all|32|64}
Restricts the types of floating point operations allowed. Section 3.4.3
--gen_cross_reference_listing -px Generates a cross-reference listing file (.crl). Section 3.10
--pending_instantiations=# Specify the number of template instantiations that may be in progress at any given time. Use 0 to specify an unlimited number. Section 3.4.4
--printf_support={nofloat|full|
minimal}
Enables support for smaller, limited versions of the printf function family (sprintf, fprintf, etc.) and the scanf function family (sscanf, fscanf, etc.) run-time-support functions. Section 3.4.3
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by default. To disable this mode, use the --strict_ansi option. Section 7.15.3
--rtti -rtti Enables C++ run-time type information (RTTI). –-
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are reported as errors. Violations that are considered discretionary may be reported as warnings instead. Section 7.15.3
Table 2-8 Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed output, writes a list of dependency lines suitable for input to a standard make utility. Section 3.6.8
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed output, writes a list of files included with the #include directive. Section 3.6.9
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user-defined macros to a file with the same name as the input but with a .pp extension. Section 3.6.10
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file with the same name as the input but with a .pp extension. Section 3.6.4
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping the comments, to a file with the same name as the input but with a .pp extension. Section 3.6.6
--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x> options that normally disable compilation. Section 3.6.5
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line-control information (#line directives) to a file with the same name as the input but with a .pp extension. Section 3.6.7
Table 2-9 Predefined Macro Options
Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 3.4.2
--undefine=name -U Undefines name. Section 3.4.2
Table 2-10 Diagnostic Message Options
Option Alias Effect Section
--advice:performance[=all,none] Provides advice on ways to improve performance. Default is all. Section 3.4.3
--compiler_revision Prints out the compiler release revision and exits. --
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 3.8.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 3.8.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 3.8.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning. Section 3.8.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this command-line option cannot be used within the Code Composer Studio IDE. Section 3.8.1
--emit_warnings_as_errors -pdew Treat warnings as errors. Section 3.8.1
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 3.8.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 3.8.1
--quiet -q Suppresses progress messages (quiet). --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after this number of errors. (The default is 100.) Section 3.8.1
--super_quiet -qq Super quiet mode. --
--tool_version -version Displays version number for each tool. --
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original source with line-wrap. Note that this command-line option cannot be used within the Code Composer Studio IDE. Section 3.8.1
--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only option. Note that this command-line option cannot be used within the Code Composer Studio IDE. Section 3.8.1
Table 2-11 Supplemental Information Options
Option Alias Effect Section
--gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 3.11
Table 2-12 Run-Time Model Options
Option Alias Effect Section
--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into subsections. This gives the linker more control over removing unused data during the final link step. See the link to the right for details about the default setting. Section 5.3.2
--gen_func_subsections={on|off} -mo Puts each function in a separate subsection in the object file. If this option is not used, the default is off. See the link to the right for details about the default setting. Section 5.3.1
--no_rpt -mi Disables generation of RPT instructions. Section 3.4.4
--protect_volatile -mv Enables volatile reference protection. Section 3.4.4
--ramfunc={on|off} If set to on, specifies that all functions should be placed in the .TI.ramfunc section, which is placed in RAM. Section 3.4.4
--rpt_threshold=k Generates RPT loops that iterate k times or less. (k is a constant between 0 and 256.) Section 3.4.4
Table 2-13 Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 3.15
--entry_parm={none|name|
address}
Specifies the parameters to the function to the --entry_hook option. Section 3.15
--exit_hook[=name] Enables exit hooks. Section 3.15
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 3.15
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 3.15
Table 2-14 Feedback Options
Option Alias Effect Section
--analyze=codecov Generate analysis info from profile data. Section 4.9.2.2
--analyze_only Only generate analysis. Section 4.9.2.2
--gen_profile_info Generates instrumentation code to collect profile information. Section 4.8.1.3
--use_profile_info=file1[, file2,...] Specifies the profile information file(s). Section 4.8.1.3
Table 2-15 Assembler Options
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file. Section 3.4.11
--asm_listing -al Generates an assembly listing file. Section 3.4.11
--c_src_interlist -ss Interlists C source and assembly statements. Section 3.13
Section 4.11
--src_interlist -s Interlists optimizer comments (if available) and assembly source statements; otherwise interlists C and assembly source statements. Section 3.4.2
--absolute_listing -aa Enables absolute listing. Section 3.4.11
--asm_cross_reference_listing -ax Generates the cross-reference file. Section 3.4.11
--asm_define=name[=def] -ad Sets the name symbol. Section 3.4.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies. Section 3.4.11
--asm_includes -api Performs preprocessing; lists only included #include files. Section 3.4.11
--issue_remarks Issues remarks (non-serious warnings), which include additional assembly-time checking. Section 3.4.11
--asm_undefine=name -au Undefines the predefined constant name. Section 3.4.11
--flash_prefetch_warn Assembler warnings for F281X BF flash prefetch issue. Section 3.4.11
--include_file=filename -ahi Includes the specified file for the assembly module. Section 3.4.11
--preproc_asm -mx Preprocesses assembly source, expands assembly macros. Section 3.4.11
Table 2-16 File Type Specifier Options
Option Alias Effect Section
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its extension. By default, the compiler and assembler treat .asm files as assembly source files. Section 3.4.7
--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By default, the compiler treats .c files as C source files. Section 3.4.7
--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files. Section 3.4.7
--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. By default, the compiler and linker treat .obj files as object code files, including both *.c.obj and *.cpp.obj files. Section 3.4.7
Table 2-17 Directory Specifier Options
Option Alias Effect Section
--abs_directory=directory -fb Specifies an absolute listing file directory. By default, the compiler uses the object file directory. Section 3.4.10
--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses the current directory. Section 3.4.10
--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file directory By default, the compiler uses the object file directory. Section 3.4.10
--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the current directory. Section 3.4.10
--output_file=filename -fe Specifies a compilation output file name; can override --obj_directory. Section 3.4.10
--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses the current directory. Section 3.4.10
--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the current directory. Section 3.4.10
Table 2-18 Default File Extensions Options
Option Alias Effect Section
--asm_extension=[.]extension -ea Sets a default extension for assembly source files. Section 3.4.9
--c_extension=[.]extension -ec Sets a default extension for C source files. Section 3.4.9
--cpp_extension=[.]extension -ep Sets a default extension for C++ source files. Section 3.4.9
--listing_extension=[.]extension -es Sets a default extension for listing files. Section 3.4.9
--obj_extension=[.]extension -eo Sets a default extension for object files. Section 3.4.9
Table 2-19 Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Multiple -@ instances can be used. Section 3.4.2