SPRUJE4D August   2024  – June 2025 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Description
  3.   Get Started
  4.   Features
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
  7. 2Hardware
    1. 2.1  Quick Start Setup
      1. 2.1.1 Configuration 1: Stand-alone Configuration
      2. 2.1.2 Configuration 2: C2000 controlCARD Compatibility Configuration Using HSEC180ADAPEVM
      3. 2.1.3 Configuration 3: Baseboard Configuration
    2. 2.2  Design Details
      1. 2.2.1 Power Tree
      2. 2.2.2 Clocking
      3. 2.2.3 Reset
      4. 2.2.4 Board ID EEPROM
    3. 2.3  Power Requirements
    4. 2.4  Configuration Options
      1. 2.4.1 Boot Mode Selection
      2. 2.4.2 ADC Voltage Reference Selection
      3. 2.4.3 MCAN-A Boot Support
      4. 2.4.4 FSI DLT Support
      5. 2.4.5 EtherCAT PHY Clock Selection
    5. 2.5  Header Information
      1. 2.5.1 Baseboard Headers (J1, J2, J3)
      2. 2.5.2 XDS Debug Header (J4)
      3. 2.5.3 DLT Header (J5)
    6. 2.6  Push Buttons
    7. 2.7  User LEDs
    8. 2.8  Debug Information
    9. 2.9  Test Points
    10. 2.10 Best Practices
  8. 3Software
    1. 3.1 Software Description
    2. 3.2 Software Installation
      1. 3.2.1 Install SDK
      2. 3.2.2 Install Additional Software
        1. 3.2.2.1 Install Python
        2. 3.2.2.2 Install OpenSSL
    3. 3.3 Software Development
    4. 3.4 Developing an Application
  9. 4Hardware Design Files
    1. 4.1 Schematics
    2. 4.2 PCB Layouts
    3. 4.3 Bill of Materials (BOM)
  10. 5Additional Information
    1. 5.1 Known Hardware or Software Issues
      1. 5.1.1 Usage Note Matrix
      2. 5.1.2 Advisories Matrix
      3. 5.1.3 Usage Notes
        1. 5.1.3.1 Parallel I/O Boot Can Cause Watchdog Timer Timeout if No Host Is Connected to EVM
        2. 5.1.3.2 Device GPIOs Dedicated to PMIC SPI Bus Should Be Used for SPI Function If Used On Baseboard
      4. 5.1.4 Advisories
        1. 5.1.4.1  MCU Flash Is Not Supported, All Code Must Execute From RAM
        2. 5.1.4.2  Incorrect Package Marking on MCU Package
        3. 5.1.4.3  Internal Oscillator (INTOSC2) on MCU Defaults to 6MHz
        4. 5.1.4.4  By Default, GPIO4 Configured as ERRORSTS by ROM Code and Driven High
        5. 5.1.4.5  MCU Fault State Possible When On-Board 25MHz Clock is Enabled
        6. 5.1.4.6  25MHz X1 Clock Is Disabled, INTOSC Must Be Used as MCU Clock Source and EtherCAT Is Not Supported
        7. 5.1.4.7  PMIC Monitoring of MCU Reset Signal (XRSN) Is Disabled
        8. 5.1.4.8  ADC VREFHIAB and VREFHICDE Incorrectly Shorted Together When S3 and S4 Are Both Set to Internal VREF Mode
        9. 5.1.4.9  Incorrect Voltage on VREFHIAB and VREFHICDE Pins When External VREF Mode Is Selected
        10. 5.1.4.10 MCU Reset Signal (XRSN) Can Remain Asserted on Power-On
        11. 5.1.4.11 FSI Signals on the Data Logging and Trace Connector (J5) May Interfere With Some Advanced Debuggers
    2. 5.2 Trademarks
  11. 6References
  12. 7Revision History

PMIC Monitoring of MCU Reset Signal (XRSN) Is Disabled

The PMIC continually monitors the MCU reset signal (XRSN) through the NRST pin. The PMIC NRST read-back circuit compares the external logic level on the NRST pin with the internally applied NRST logic level. If this read-back circuit detects a difference between these two logic levels, the device sets the NRST read-back error. An NRST read-back error can cause the PMIC to enter a safe state during which the MCU supplies are turned off.

A reset initiated through the on-board reset switch (SW1) or a software reset initiated by the MCU can inadvertently trigger a PMIC NRST read-back error and cause the MCU supplies to shut down. The PMIC's NRST read-back feature has been effectively disabled by disconnecting the NRST pin from the MCU XRSN pin.