SWCU185F january   2018  – march 2023 CC1312R , CC1352P , CC1352R , CC2642R , CC2642R-Q1 , CC2652P , CC2652PSIP , CC2652R , CC2652RB , CC2652RSIP , CC2662R-Q1

 

  1.   Read This First
    1.     About This Manual
    2.     Devices
    3.     Register, Field, and Bit Calls
    4.     Related Documentation
    5. 1.1 Trademarks
  2. Architectural Overview
    1. 2.1 Target Applications
    2. 2.2 Overview
    3. 2.3 Functional Overview
      1. 2.3.1  Arm® Cortex®-M4F
        1. 2.3.1.1 Processor Core
        2. 2.3.1.2 System Timer (SysTick)
        3. 2.3.1.3 Nested Vector Interrupt Controller (NVIC)
        4. 2.3.1.4 System Control Block
      2. 2.3.2  On-Chip Memory
        1. 2.3.2.1 SRAM
        2. 2.3.2.2 Flash Memory
        3. 2.3.2.3 ROM
      3. 2.3.3  Radio
      4. 2.3.4  Security Core
      5. 2.3.5  General-Purpose Timers
        1. 2.3.5.1 Watchdog Timer
        2. 2.3.5.2 Always-On Domain
      6. 2.3.6  Direct Memory Access
      7. 2.3.7  System Control and Clock
      8. 2.3.8  Serial Communication Peripherals
        1. 2.3.8.1 UART
        2. 2.3.8.2 I2C
        3. 2.3.8.3 I2S
        4. 2.3.8.4 SSI
      9. 2.3.9  Programmable I/Os
      10. 2.3.10 Sensor Controller
      11. 2.3.11 Random Number Generator
      12. 2.3.12 cJTAG and JTAG
      13. 2.3.13 Power Supply System
        1. 2.3.13.1 Supply System
          1. 2.3.13.1.1 VDDS
          2. 2.3.13.1.2 VDDR
          3. 2.3.13.1.3 Digital Core Supply
          4. 2.3.13.1.4 Other Internal Supplies
        2. 2.3.13.2 DC/DC Converter
  3. Arm® Cortex®-M4F Processor
    1. 3.1 Arm® Cortex®-M4F Processor Introduction
    2. 3.2 Block Diagram
    3. 3.3 Overview
      1. 3.3.1 System-Level Interface
      2. 3.3.2 Integrated Configurable Debug
      3. 3.3.3 Trace Port Interface Unit
      4. 3.3.4 Floating Point Unit (FPU)
      5. 3.3.5 Memory Protection Unit (MPU)
      6. 3.3.6 Arm® Cortex®-M4F System Component Details
    4. 3.4 Programming Model
      1. 3.4.1 Processor Mode and Privilege Levels for Software Execution
      2. 3.4.2 Stacks
      3. 3.4.3 Exceptions and Interrupts
      4. 3.4.4 Data Types
    5. 3.5 Arm® Cortex®-M4F Core Registers
      1. 3.5.1 Core Register Map
      2. 3.5.2 Core Register Descriptions
        1. 3.5.2.1  Cortex®General-Purpose Register 0 (R0)
        2. 3.5.2.2  Cortex® General-Purpose Register 1 (R1)
        3. 3.5.2.3  Cortex® General-Purpose Register 2 (R2)
        4. 3.5.2.4  Cortex® General-Purpose Register 3 (R3)
        5. 3.5.2.5  Cortex® General-Purpose Register 4 (R4)
        6. 3.5.2.6  Cortex® General-Purpose Register 5 (R5)
        7. 3.5.2.7  Cortex® General-Purpose Register 6 (R6)
        8. 3.5.2.8  Cortex® General-Purpose Register 7 (R7)
        9. 3.5.2.9  Cortex® General-Purpose Register 8 (R8)
        10. 3.5.2.10 Cortex® General-Purpose Register 9 (R9)
        11. 3.5.2.11 Cortex® General-Purpose Register 10 (R10)
        12. 3.5.2.12 Cortex® General-Purpose Register 11 (R11)
        13. 3.5.2.13 Cortex® General-Purpose Register 12 (R12)
        14. 3.5.2.14 Stack Pointer (SP)
        15. 3.5.2.15 Link Register (LR)
        16. 3.5.2.16 Program Counter (PC)
        17. 3.5.2.17 Program Status Register (PSR)
        18. 3.5.2.18 Priority Mask Register (PRIMASK)
        19. 3.5.2.19 Fault Mask Register (FAULTMASK)
        20. 3.5.2.20 Base Priority Mask Register (BASEPRI)
        21. 3.5.2.21 Control Register (CONTROL)
    6. 3.6 Instruction Set Summary
      1. 3.6.1 Arm® Cortex®-M4F Instructions
      2. 3.6.2 Load and Store Timings
      3. 3.6.3 Binary Compatibility With Other Cortex® Processors
    7. 3.7 Floating Point Unit (FPU)
      1. 3.7.1 About the FPU
      2. 3.7.2 FPU Functional Description
        1. 3.7.2.1 FPU Views of the Register Bank
        2. 3.7.2.2 Modes of Operation
          1. 3.7.2.2.1 Full-Compliance Mode
          2. 3.7.2.2.2 Flush-to-Zero Mode
          3. 3.7.2.2.3 Default NaN Mode
        3. 3.7.2.3 FPU Instruction Set
        4. 3.7.2.4 Compliance With the IEEE 754 Standard
        5. 3.7.2.5 Complete Implementation of the IEEE 754 Standard
        6. 3.7.2.6 IEEE 754 Standard Implementation Choices
          1. 3.7.2.6.1 NaN Handling
          2. 3.7.2.6.2 Comparisons
          3. 3.7.2.6.3 Underflow
        7. 3.7.2.7 Exceptions
      3. 3.7.3 FPU Programmers Model
        1. 3.7.3.1 Enabling the FPU
          1. 3.7.3.1.1 Enabling the FPU
    8. 3.8 Memory Protection Unit (MPU)
      1. 3.8.1 About the MPU
      2. 3.8.2 MPU Functional Description
      3. 3.8.3 MPU Programmers Model
    9. 3.9 Arm® Cortex®-M4F Processor Registers
      1. 3.9.1 CPU_DWT Registers
      2. 3.9.2 CPU_FPB Registers
      3. 3.9.3 CPU_ITM Registers
      4. 3.9.4 CPU_SCS Registers
      5. 3.9.5 CPU_TPIU Registers
  4. Memory Map
    1. 4.1 Memory Map
  5. Arm® Cortex®-M4F Peripherals
    1. 5.1 Arm® Cortex®-M4F Peripherals Introduction
    2. 5.2 Functional Description
      1. 5.2.1 SysTick
      2. 5.2.2 NVIC
        1. 5.2.2.1 Level-Sensitive and Pulse Interrupts
        2. 5.2.2.2 Hardware and Software Control of Interrupts
      3. 5.2.3 SCB
      4. 5.2.4 ITM
      5. 5.2.5 FPB
      6. 5.2.6 TPIU
      7. 5.2.7 DWT
  6. Interrupts and Events
    1. 6.1 Exception Model
      1. 6.1.1 Exception States
      2. 6.1.2 Exception Types
      3. 6.1.3 Exception Handlers
      4. 6.1.4 Vector Table
      5. 6.1.5 Exception Priorities
      6. 6.1.6 Interrupt Priority Grouping
      7. 6.1.7 Exception Entry and Return
        1. 6.1.7.1 Exception Entry
        2. 6.1.7.2 Exception Return
    2. 6.2 Fault Handling
      1. 6.2.1 Fault Types
      2. 6.2.2 Fault Escalation and Hard Faults
      3. 6.2.3 Fault Status Registers and Fault Address Registers
      4. 6.2.4 Lockup
    3. 6.3 Event Fabric
      1. 6.3.1 Introduction
      2. 6.3.2 Event Fabric Overview
        1. 6.3.2.1 Registers
    4. 6.4 AON Event Fabric
      1. 6.4.1 Common Input Event List
      2. 6.4.2 Event Subscribers
        1. 6.4.2.1 Wake-Up Controller (WUC)
        2. 6.4.2.2 Real-Time Clock
        3. 6.4.2.3 MCU Event Fabric
    5. 6.5 MCU Event Fabric
      1. 6.5.1 Common Input Event List
      2. 6.5.2 Event Subscribers
        1. 6.5.2.1 System CPU
        2. 6.5.2.2 NMI
        3. 6.5.2.3 Freeze
    6. 6.6 AON Events
    7. 6.7 Interrupts and Events Registers
      1. 6.7.1 AON_EVENT Registers
      2. 6.7.2 EVENT Registers
  7. JTAG Interface
    1. 7.1  Top-Level Debug System
    2. 7.2  cJTAG
      1. 7.2.1 cJTAG Commands
        1. 7.2.1.1 Mandatory Commands
      2. 7.2.2 Programming Sequences
        1. 7.2.2.1 Opening Command Window
        2. 7.2.2.2 Changing to 4-Pin Mode
        3. 7.2.2.3 Close Command Window
    3. 7.3  ICEPick
      1. 7.3.1 Secondary TAPs
        1. 7.3.1.1 Slave DAP (CPU DAP)
        2. 7.3.1.2 Ordering Slave TAPs and DAPs
      2. 7.3.2 ICEPick Registers
        1. 7.3.2.1 IR Instructions
        2. 7.3.2.2 Data Shift Register
        3. 7.3.2.3 Instruction Register
        4. 7.3.2.4 Bypass Register
        5. 7.3.2.5 Device Identification Register
        6. 7.3.2.6 User Code Register
        7. 7.3.2.7 ICEPick Identification Register
        8. 7.3.2.8 Connect Register
      3. 7.3.3 Router Scan Chain
      4. 7.3.4 TAP Routing Registers
        1. 7.3.4.1 ICEPick Control Block
          1. 7.3.4.1.1 All0s Register
          2. 7.3.4.1.2 ICEPick Control Register
          3. 7.3.4.1.3 Linking Mode Register
        2. 7.3.4.2 Test TAP Linking Block
          1. 7.3.4.2.1 Secondary Test TAP Register
        3. 7.3.4.3 Debug TAP Linking Block
          1. 7.3.4.3.1 Secondary Debug TAP Register
    4. 7.4  ICEMelter
    5. 7.5  Serial Wire Viewer (SWV)
    6. 7.6  Halt In Boot (HIB)
    7. 7.7  Debug and Shutdown
    8. 7.8  Debug Features Supported Through WUC TAP
    9. 7.9  Profiler Register
    10. 7.10 Boundary Scan
  8. Power, Reset, and Clock Management (PRCM)
    1. 8.1 Introduction
    2. 8.2 System CPU Mode
    3. 8.3 Supply System
      1. 8.3.1 Internal DC/DC Converter and Global LDO
    4. 8.4 Digital Power Partitioning
      1. 8.4.1 MCU_VD
        1. 8.4.1.1 MCU_VD Power Domains
      2. 8.4.2 AON_VD
        1. 8.4.2.1 AON_VD Power Domains
    5. 8.5 Clock Management
      1. 8.5.1 System Clocks
        1. 8.5.1.1 Controlling the Oscillators
      2. 8.5.2 Clocks in MCU_VD
        1. 8.5.2.1 Clock Gating
        2. 8.5.2.2 Scaler to GPTs
        3. 8.5.2.3 Scaler to WDT
      3. 8.5.3 Clocks in AON_VD
    6. 8.6 Power Modes
      1. 8.6.1 Start-Up State
      2. 8.6.2 Active Mode
      3. 8.6.3 Idle Mode
      4. 8.6.4 Standby Mode
      5. 8.6.5 Shutdown Mode
    7. 8.7 Reset
      1. 8.7.1 System Resets
        1. 8.7.1.1 Clock Loss Detection
        2. 8.7.1.2 Software-Initiated System Reset
        3. 8.7.1.3 Warm Reset Converted to System Reset
      2. 8.7.2 Reset of the MCU_VD Power Domains and Modules
      3. 8.7.3 Reset of AON_VD
    8. 8.8 PRCM Registers
      1. 8.8.1 DDI_0_OSC Registers
      2. 8.8.2 PRCM Registers
      3. 8.8.3 AON_PMCTL Registers
  9. Versatile Instruction Memory System (VIMS)
    1. 9.1 Introduction
    2. 9.2 VIMS Configurations
      1. 9.2.1 VIMS Modes
        1. 9.2.1.1 GPRAM Mode
        2. 9.2.1.2 Off Mode
        3. 9.2.1.3 Cache Mode
      2. 9.2.2 VIMS FLASH Line Buffers
      3. 9.2.3 VIMS Arbitration
      4. 9.2.4 VIMS Cache TAG Prefetch
    3. 9.3 VIMS Software Remarks
      1. 9.3.1 FLASH Program or Update
      2. 9.3.2 VIMS Retention
        1. 9.3.2.1 Mode 1
        2. 9.3.2.2 Mode 2
        3. 9.3.2.3 Mode 3
    4. 9.4 ROM
    5. 9.5 FLASH
      1. 9.5.1 FLASH Memory Protection
      2. 9.5.2 Memory Programming
      3. 9.5.3 FLASH Memory Programming
      4. 9.5.4 Power Management Requirements
    6. 9.6 ROM Functions
    7. 9.7 VIMS Registers
      1. 9.7.1 FLASH Registers
      2. 9.7.2 VIMS Registers
  10. 10SRAM
    1. 10.1 Introduction
    2. 10.2 Main Features
    3. 10.3 Data Retention
    4. 10.4 Parity and SRAM Error Support
    5. 10.5 SRAM Auto-Initialization
    6. 10.6 Parity Debug Behavior
    7. 10.7 SRAM Registers
      1. 10.7.1 SRAM_MMR Registers
      2. 10.7.2 SRAM Registers
  11. 11Bootloader
    1. 11.1 Bootloader Functionality
      1. 11.1.1 Bootloader Disabling
      2. 11.1.2 Bootloader Backdoor
    2. 11.2 Bootloader Interfaces
      1. 11.2.1 Packet Handling
        1. 11.2.1.1 Packet Acknowledge and Not-Acknowledge Bytes
      2. 11.2.2 Transport Layer
        1. 11.2.2.1 UART Transport
          1. 11.2.2.1.1 UART Baud Rate Automatic Detection
        2. 11.2.2.2 SSI Transport
      3. 11.2.3 Serial Bus Commands
        1. 11.2.3.1  COMMAND_PING
        2. 11.2.3.2  COMMAND_DOWNLOAD
        3. 11.2.3.3  COMMAND_SEND_DATA
        4. 11.2.3.4  COMMAND_SECTOR_ERASE
        5. 11.2.3.5  COMMAND_GET_STATUS
        6. 11.2.3.6  COMMAND_RESET
        7. 11.2.3.7  COMMAND_GET_CHIP_ID
        8. 11.2.3.8  COMMAND_CRC32
        9. 11.2.3.9  COMMAND_BANK_ERASE
        10. 11.2.3.10 COMMAND_MEMORY_READ
        11. 11.2.3.11 COMMAND_MEMORY_WRITE
        12. 11.2.3.12 COMMAND_SET_CCFG
        13. 11.2.3.13 COMMAND_DOWNLOAD_CRC
  12. 12Device Configuration
    1. 12.1 Customer Configuration (CCFG)
    2. 12.2 CCFG Registers
      1. 12.2.1 CCFG Registers
    3. 12.3 Factory Configuration (FCFG)
    4. 12.4 FCFG Registers
      1. 12.4.1 FCFG1 Registers
  13. 13Cryptography
    1. 13.1 AES and Hash Cryptoprocessor Introduction
    2. 13.2 Functional Description
      1. 13.2.1 Debug Capabilities
      2. 13.2.2 Exception Handling
    3. 13.3 Power Management and Sleep Modes
    4. 13.4 Hardware Description
      1. 13.4.1 AHB Slave Bus
      2. 13.4.2 AHB Master Bus
      3. 13.4.3 Interrupts
    5. 13.5 Module Description
      1. 13.5.1 Introduction
      2. 13.5.2 Module Memory Map
      3. 13.5.3 DMA Controller
        1. 13.5.3.1 Internal Operation
        2. 13.5.3.2 Supported DMA Operations
      4. 13.5.4 Master Control and Select Module
        1. 13.5.4.1 Algorithm Select Register
          1. 13.5.4.1.1 Algorithm Select
        2. 13.5.4.2 Master PROT Enable
          1. 13.5.4.2.1 Master PROT-Privileged Access-Enable
        3. 13.5.4.3 Software Reset
      5. 13.5.5 AES Engine
        1. 13.5.5.1 Second Key Registers (Internal, But Clearable)
        2. 13.5.5.2 AES Initialization Vector (IV) Registers
        3. 13.5.5.3 AES I/O Buffer Control, Mode, and Length Registers
        4. 13.5.5.4 Data Input and Output Registers
        5. 13.5.5.5 TAG Registers
      6. 13.5.6 Key Area Registers
        1. 13.5.6.1 Key Write Area Register
        2. 13.5.6.2 Key Written Area Register
        3. 13.5.6.3 Key Size Register
        4. 13.5.6.4 Key Store Read Area Register
        5. 13.5.6.5 Hash Engine
    6. 13.6 AES Module Performance
      1. 13.6.1 Introduction
      2. 13.6.2 Performance for DMA-Based Operations
    7. 13.7 Programming Guidelines
      1. 13.7.1 One-Time Initialization After a Reset
      2. 13.7.2 DMAC and Master Control
        1. 13.7.2.1 Regular Use
        2. 13.7.2.2 Interrupting DMA Transfers
        3. 13.7.2.3 Interrupts, Hardware, and Software Synchronization
      3. 13.7.3 Hashing
        1. 13.7.3.1 Data Format and Byte Order
        2. 13.7.3.2 Basic Hash With Data From DMA
          1. 13.7.3.2.1 New Hash Session With Digest Read Through Slave
          2. 13.7.3.2.2 New Hash Session With Digest to External Memory
          3. 13.7.3.2.3 Resumed Hash Session
        3. 13.7.3.3 HMAC
          1. 13.7.3.3.1 Secure HMAC
        4. 13.7.3.4 Alternative Basic Hash Where Data Originates From Slave Interface
          1. 13.7.3.4.1 New Hash Session
          2. 13.7.3.4.2 Resumed Hash Session
      4. 13.7.4 Encryption and Decryption
        1. 13.7.4.1 Data Format and Byte Order
        2. 13.7.4.2 Key Store
          1. 13.7.4.2.1 Load Keys From External Memory
        3. 13.7.4.3 Basic AES Modes
          1. 13.7.4.3.1 AES-ECB
          2. 13.7.4.3.2 AES-CBC
          3. 13.7.4.3.3 AES-CTR
          4. 13.7.4.3.4 Programming Sequence With DMA Data
        4. 13.7.4.4 CBC-MAC
          1. 13.7.4.4.1 Programming Sequence for CBC-MAC
        5. 13.7.4.5 AES-CCM
          1. 13.7.4.5.1 Programming Sequence for AES-CCM
        6. 13.7.4.6 AES-GCM
          1. 13.7.4.6.1 Programming Sequence for AES-GCM
      5. 13.7.5 Exceptions Handling
        1. 13.7.5.1 Soft Reset
        2. 13.7.5.2 External Port Errors
        3. 13.7.5.3 Key Store Errors
          1. 13.7.5.3.1 PKA Engine
          2. 13.7.5.3.2 Functional Description
            1. 13.7.5.3.2.1 Module Architecture
          3. 13.7.5.3.3 PKA RAM
            1. 13.7.5.3.3.1 PKCP Operations
            2. 13.7.5.3.3.2 Sequencer Operations
              1. 13.7.5.3.3.2.1 Modular Exponentiation Operations
              2. 13.7.5.3.3.2.2 Modular Inversion Operation
              3. 13.7.5.3.3.2.3 Performance
              4. 13.7.5.3.3.2.4 ECC Operations
              5. 13.7.5.3.3.2.5 Performance
              6. 13.7.5.3.3.2.6 ExpMod Performance
              7. 13.7.5.3.3.2.7 Modular Inversion Performance
              8. 13.7.5.3.3.2.8 ECC Operation Performance
            3. 13.7.5.3.3.3 Sequencer ROM Behavior and Interfaces
            4. 13.7.5.3.3.4 Register Configurations
            5. 13.7.5.3.3.5 Operation Sequence
    8. 13.8 Conventions and Compliances
      1. 13.8.1 Conventions Used in This Manual
        1. 13.8.1.1 Terminology
        2. 13.8.1.2 Formulas and Nomenclature
      2. 13.8.2 Compliance
    9. 13.9 Cryptography Registers
      1. 13.9.1 CRYPTO Registers
  14. 14I/O Controller (IOC)
    1. 14.1  Introduction
    2. 14.2  IOC Overview
    3. 14.3  I/O Mapping and Configuration
      1. 14.3.1 Basic I/O Mapping
      2. 14.3.2 Mapping AUXIOs to DIO Pins
      3. 14.3.3 Control External LNA/PA (Range Extender) With I/Os
      4. 14.3.4 Map the 32 kHz System Clock (LF Clock) to DIO
    4. 14.4  Edge Detection on DIO Pins
      1. 14.4.1 Configure DIO as GPIO Input to Generate Interrupt on EDGE DETECT
    5. 14.5  Unused I/O Pins
    6. 14.6  GPIO
    7. 14.7  I/O Pin Capability
    8. 14.8  Peripheral PORTIDs
    9. 14.9  I/O Pins
      1. 14.9.1 Input/Output Modes
        1. 14.9.1.1 Physical Pin
        2. 14.9.1.2 Pin Configuration
    10. 14.10 IOC Registers
      1. 14.10.1 AON_IOC Registers
      2. 14.10.2 GPIO Registers
      3. 14.10.3 IOC Registers
  15. 15Micro Direct Memory Access (µDMA)
    1. 15.1 μDMA Introduction
    2. 15.2 Block Diagram
    3. 15.3 Functional Description
      1. 15.3.1  Channel Assignments
      2. 15.3.2  Priority
      3. 15.3.3  Arbitration Size
      4. 15.3.4  Request Types
        1. 15.3.4.1 Single Request
        2. 15.3.4.2 Burst Request
      5. 15.3.5  Channel Configuration
      6. 15.3.6  Transfer Modes
        1. 15.3.6.1 Stop Mode
        2. 15.3.6.2 Basic Mode
        3. 15.3.6.3 Auto Mode
        4. 15.3.6.4 Ping-Pong
        5. 15.3.6.5 Memory Scatter-Gather Mode
        6. 15.3.6.6 Peripheral Scatter-Gather Mode
      7. 15.3.7  Transfer Size and Increments
      8. 15.3.8  Peripheral Interface
      9. 15.3.9  Software Request
      10. 15.3.10 Interrupts and Errors
    4. 15.4 Initialization and Configuration
      1. 15.4.1 Module Initialization
      2. 15.4.2 Configuring a Memory-to-Memory Transfer
        1. 15.4.2.1 Configure the Channel Attributes
        2. 15.4.2.2 Configure the Channel Control Structure
        3. 15.4.2.3 Start the Transfer
    5. 15.5 µDMA Registers
      1. 15.5.1 UDMA Registers
  16. 16Timers
    1. 16.1 General-Purpose Timers
    2. 16.2 Block Diagram
    3. 16.3 Functional Description
      1. 16.3.1 GPTM Reset Conditions
      2. 16.3.2 Timer Modes
        1. 16.3.2.1 One-Shot or Periodic Timer Mode
        2. 16.3.2.2 Input Edge-Count Mode
        3. 16.3.2.3 Input Edge-Time Mode
        4. 16.3.2.4 PWM Mode
        5. 16.3.2.5 Wait-for-Trigger Mode
      3. 16.3.3 Synchronizing GPT Blocks
      4. 16.3.4 Accessing Concatenated 16- and 32-Bit GPTM Register Values
    4. 16.4 Initialization and Configuration
      1. 16.4.1 One-Shot and Periodic Timer Modes
      2. 16.4.2 Input Edge-Count Mode
      3. 16.4.3 Input Edge-Timing Mode
      4. 16.4.4 PWM Mode
      5. 16.4.5 Producing DMA Trigger Events
    5. 16.5 GPTM Registers
      1. 16.5.1 GPT Registers
  17. 17Real-Time Clock (RTC)
    1. 17.1 Introduction
    2. 17.2 Functional Specifications
      1. 17.2.1 Functional Overview
      2. 17.2.2 Free-Running Counter
      3. 17.2.3 Channels
        1. 17.2.3.1 Capture and Compare
      4. 17.2.4 Events
    3. 17.3 RTC Register Information
      1. 17.3.1 Register Access
      2. 17.3.2 Entering Sleep and Wakeup From Sleep
      3. 17.3.3 AON_RTC:SYNC Register
    4. 17.4 RTC Registers
      1. 17.4.1 AON_RTC Registers
  18. 18Watchdog Timer (WDT)
    1. 18.1 Introduction
    2. 18.2 Functional Description
    3. 18.3 Initialization and Configuration
    4. 18.4 WDT Registers
      1. 18.4.1 WDT Registers
  19. 19True Random Number Generator (TRNG)
    1. 19.1 Introduction
    2. 19.2 Block Diagram
    3. 19.3 TRNG Software Reset
    4. 19.4 Interrupt Requests
    5. 19.5 TRNG Operation Description
      1. 19.5.1 TRNG Shutdown
      2. 19.5.2 TRNG Alarms
      3. 19.5.3 TRNG Entropy
    6. 19.6 TRNG Low-Level Programing Guide
      1. 19.6.1 Initialization
        1. 19.6.1.1 Interfacing Modules
        2. 19.6.1.2 TRNG Main Sequence
        3. 19.6.1.3 TRNG Operating Modes
          1. 19.6.1.3.1 Polling Mode
          2. 19.6.1.3.2 Interrupt Mode
    7. 19.7 TRNG Registers
      1. 19.7.1 TRNG Registers
  20. 20AUX Domain Sensor Controller and Peripherals
    1. 20.1 Introduction
      1. 20.1.1 AUX Block Diagram
    2. 20.2 Power and Clock Management
      1. 20.2.1 Operational Modes
        1. 20.2.1.1 Dual-Rate AUX Clock
      2. 20.2.2 Use Scenarios
        1. 20.2.2.1 MCU
        2. 20.2.2.2 Sensor Controller
      3. 20.2.3 SCE Clock Emulation
      4. 20.2.4 AUX RAM Retention
    3. 20.3 Sensor Controller
      1. 20.3.1 Sensor Controller Studio
        1. 20.3.1.1 Programming Model
        2. 20.3.1.2 Task Development
        3. 20.3.1.3 Task Testing, Task Debugging and Run-Time Logging
        4. 20.3.1.4 Documentation
      2. 20.3.2 Sensor Controller Engine (SCE)
        1. 20.3.2.1  Registers
          1.        Pipeline Hazards
        2. 20.3.2.2  Memory Architecture
          1.        Memory Access to Instructions and Data
          2.        I/O Access to Module Registers
        3. 20.3.2.3  Program Flow
          1.        Zero-Overhead Loop
        4. 20.3.2.4  Instruction Set
          1. 20.3.2.4.1 Instruction Timing
          2. 20.3.2.4.2 Instruction Prefix
          3. 20.3.2.4.3 Instructions
        5. 20.3.2.5  SCE Event Interface
        6. 20.3.2.6  Math Accelerator (MAC)
        7. 20.3.2.7  Programmable Microsecond Delay
        8. 20.3.2.8  Wake-Up Event Handling
        9. 20.3.2.9  Access to AON Domain Registers
        10. 20.3.2.10 VDDR Recharge
    4. 20.4 Digital Peripheral Modules
      1. 20.4.1 Overview
        1. 20.4.1.1 DDI Control-Configuration
      2. 20.4.2 AIODIO
        1. 20.4.2.1 Introduction
        2. 20.4.2.2 Functional Description
          1. 20.4.2.2.1 Mapping to DIO Pins
          2. 20.4.2.2.2 Configuration
          3. 20.4.2.2.3 GPIO Mode
          4. 20.4.2.2.4 Input Buffer
          5. 20.4.2.2.5 Data Output Source
      3. 20.4.3 SMPH
        1. 20.4.3.1 Introduction
        2. 20.4.3.2 Functional Description
        3. 20.4.3.3 Semaphore Allocation in TI Software
      4. 20.4.4 SPIM
        1. 20.4.4.1 Introduction
        2. 20.4.4.2 Functional Description
          1. 20.4.4.2.1 TX and RX Operations
          2. 20.4.4.2.2 Configuration
          3. 20.4.4.2.3 Timing Diagrams
      5. 20.4.5 Time-to-Digital Converter (TDC)
        1. 20.4.5.1 Introduction
        2. 20.4.5.2 Functional Description
          1. 20.4.5.2.1 Command
          2. 20.4.5.2.2 Conversion Time Configuration
          3. 20.4.5.2.3 Status and Result
          4. 20.4.5.2.4 Clock Source Selection
            1. 20.4.5.2.4.1 Counter Clock
            2. 20.4.5.2.4.2 Reference Clock
          5. 20.4.5.2.5 Start and Stop Events
          6. 20.4.5.2.6 Prescaler
        3. 20.4.5.3 Supported Measurement Types
          1. 20.4.5.3.1 Measure Pulse Width
          2. 20.4.5.3.2 Measure Frequency
          3. 20.4.5.3.3 Measure Time Between Edges of Different Events Sources
            1. 20.4.5.3.3.1 Asynchronous Counter Start – Ignore 0 Stop Events
            2. 20.4.5.3.3.2 Synchronous Counter Start – Ignore 0 Stop Events
            3. 20.4.5.3.3.3 Asynchronous Counter Start – Ignore Stop Events
            4. 20.4.5.3.3.4 Synchronous Counter Start – Ignore Stop Events
          4. 20.4.5.3.4 Pulse Counting
      6. 20.4.6 Timer01
        1. 20.4.6.1 Introduction
        2. 20.4.6.2 Functional Description
      7. 20.4.7 Timer2
        1. 20.4.7.1 Introduction
        2. 20.4.7.2 Functional Description
          1. 20.4.7.2.1 Clock Source
          2. 20.4.7.2.2 Clock Prescaler
          3. 20.4.7.2.3 Counter
          4. 20.4.7.2.4 Event Outputs
          5. 20.4.7.2.5 Channel Actions
            1. 20.4.7.2.5.1 Period and Pulse Width Measurement
              1. 20.4.7.2.5.1.1 Timer Period and Pulse Width Capture
            2. 20.4.7.2.5.2 Clear on Zero, Toggle on Compare Repeatedly
              1. 20.4.7.2.5.2.1 Center-Aligned PWM Generation by Channel 0
            3. 20.4.7.2.5.3 Set on Zero, Toggle on Compare Repeatedly
              1. 20.4.7.2.5.3.1 Edge-Aligned PWM Generation by Channel 0
          6. 20.4.7.2.6 Asynchronous Bus Bridge
    5. 20.5 Analog Peripheral Modules
      1. 20.5.1 Overview
        1. 20.5.1.1 ADI Control-Configuration
        2. 20.5.1.2 Block Diagram
      2. 20.5.2 Analog-to-Digital Converter (ADC)
        1. 20.5.2.1 Introduction
        2. 20.5.2.2 Functional Description
          1. 20.5.2.2.1 Input Selection and Scaling
          2. 20.5.2.2.2 Reference Selection
          3. 20.5.2.2.3 ADC Sample Mode
          4. 20.5.2.2.4 ADC Clock Source
          5. 20.5.2.2.5 ADC Trigger
          6. 20.5.2.2.6 Sample FIFO
          7. 20.5.2.2.7 µDMA Interface
          8. 20.5.2.2.8 Resource Ownership and Usage
      3. 20.5.3 COMPA
        1. 20.5.3.1 Introduction
        2. 20.5.3.2 Functional Description
          1. 20.5.3.2.1 Input Selection
          2. 20.5.3.2.2 Reference Selection
          3. 20.5.3.2.3 LPM Bias and COMPA Enable
          4. 20.5.3.2.4 Resource Ownership and Usage
      4. 20.5.4 COMPB
        1. 20.5.4.1 Introduction
        2. 20.5.4.2 Functional Description
          1. 20.5.4.2.1 Input Selection
          2. 20.5.4.2.2 Reference Selection
          3. 20.5.4.2.3 Resource Ownership and Usage
            1. 20.5.4.2.3.1 Sensor Controller Wakeup
            2. 20.5.4.2.3.2 System CPU Wakeup
      5. 20.5.5 Reference DAC
        1. 20.5.5.1 Introduction
        2. 20.5.5.2 Functional Description
          1. 20.5.5.2.1 Reference Selection
          2. 20.5.5.2.2 Output Voltage Control and Range
          3. 20.5.5.2.3 Sample Clock
            1. 20.5.5.2.3.1 Automatic Phase Control
            2. 20.5.5.2.3.2 Manual Phase Control
            3. 20.5.5.2.3.3 Operational Mode Dependency
          4. 20.5.5.2.4 Output Selection
            1. 20.5.5.2.4.1 Buffer
            2. 20.5.5.2.4.2 External Load
            3. 20.5.5.2.4.3 COMPA_REF
            4. 20.5.5.2.4.4 COMPB_REF
          5. 20.5.5.2.5 LPM Bias
          6. 20.5.5.2.6 Resource Ownership and Usage
      6. 20.5.6 ISRC
        1. 20.5.6.1 Introduction
        2. 20.5.6.2 Functional Description
          1. 20.5.6.2.1 Programmable Current
          2. 20.5.6.2.2 Voltage Reference
          3. 20.5.6.2.3 ISRC Enable
          4. 20.5.6.2.4 Temperature Dependency
          5. 20.5.6.2.5 Resource Ownership and Usage
    6. 20.6 Event Routing and Usage
      1. 20.6.1 AUX Event Bus
        1. 20.6.1.1 Event Signals
        2. 20.6.1.2 Event Subscribers
          1. 20.6.1.2.1 Event Detection
            1. 20.6.1.2.1.1 Detection of Asynchronous Events
            2. 20.6.1.2.1.2 Detection of Synchronous Events
      2. 20.6.2 Event Observation on External Pin
      3. 20.6.3 Events From MCU Domain
      4. 20.6.4 Events to MCU Domain
      5. 20.6.5 Events From AON Domain
      6. 20.6.6 Events to AON Domain
      7. 20.6.7 µDMA Interface
    7. 20.7 Sensor Controller Alias Register Space
    8. 20.8 AUX Domain Sensor Controller and Peripherals Registers
      1. 20.8.1  ADI_4_AUX Registers
      2. 20.8.2  AUX_AIODIO Registers
      3. 20.8.3  AUX_EVCTL Registers
      4. 20.8.4  AUX_SMPH Registers
      5. 20.8.5  AUX_TDC Registers
      6. 20.8.6  AUX_TIMER01 Registers
      7. 20.8.7  AUX_TIMER2 Registers
      8. 20.8.8  AUX_ANAIF Registers
      9. 20.8.9  AUX_SYSIF Registers
      10. 20.8.10 AUX_SPIM Registers
      11. 20.8.11 AUX_MAC Registers
      12. 20.8.12 AUX_SCE Registers
  21. 21Battery Monitor and Temperature Sensor (BATMON)
    1. 21.1 Introduction
    2. 21.2 Functional Description
    3. 21.3 BATMON Registers
      1. 21.3.1 AON_BATMON Registers
  22. 22Universal Asynchronous Receiver/Transmitter (UART)
    1. 22.1 Introduction
    2. 22.2 Block Diagram
    3. 22.3 Signal Description
    4. 22.4 Functional Description
      1. 22.4.1 Transmit and Receive Logic
      2. 22.4.2 Baud-rate Generation
      3. 22.4.3 Data Transmission
      4. 22.4.4 Modem Handshake Support
        1. 22.4.4.1 Signaling
        2. 22.4.4.2 Flow Control
          1. 22.4.4.2.1 Hardware Flow Control (RTS and CTS)
          2. 22.4.4.2.2 Software Flow Control (Modem Status Interrupts)
      5. 22.4.5 FIFO Operation
      6. 22.4.6 Interrupts
      7. 22.4.7 Loopback Operation
    5. 22.5 Interface to DMA
    6. 22.6 Initialization and Configuration
    7. 22.7 UART Registers
      1. 22.7.1 UART Registers
  23. 23Synchronous Serial Interface (SSI)
    1. 23.1 Introduction
    2. 23.2 Block Diagram
    3. 23.3 Signal Description
    4. 23.4 Functional Description
      1. 23.4.1 Bit Rate Generation
      2. 23.4.2 FIFO Operation
        1. 23.4.2.1 Transmit FIFO
        2. 23.4.2.2 Receive FIFO
      3. 23.4.3 Interrupts
      4. 23.4.4 Frame Formats
        1. 23.4.4.1 Texas Instruments Synchronous Serial Frame Format
        2. 23.4.4.2 Motorola SPI Frame Format
          1. 23.4.4.2.1 SPO Clock Polarity Bit
          2. 23.4.4.2.2 SPH Phase-Control Bit
        3. 23.4.4.3 Motorola SPI Frame Format With SPO = 0 and SPH = 0
        4. 23.4.4.4 Motorola SPI Frame Format With SPO = 0 and SPH = 1
        5. 23.4.4.5 Motorola SPI Frame Format With SPO = 1 and SPH = 0
        6. 23.4.4.6 Motorola SPI Frame Format With SPO = 1 and SPH = 1
        7. 23.4.4.7 MICROWIRE Frame Format
    5. 23.5 DMA Operation
    6. 23.6 Initialization and Configuration
    7. 23.7 SSI Registers
      1. 23.7.1 SSI Registers
  24. 24Inter-Integrated Circuit (I2C)
    1. 24.1 Introduction
    2. 24.2 Block Diagram
    3. 24.3 Functional Description
      1. 24.3.1 I2C Bus Functional Overview
        1. 24.3.1.1 Start and Stop Conditions
        2. 24.3.1.2 Data Format With 7-Bit Address
        3. 24.3.1.3 Data Validity
        4. 24.3.1.4 Acknowledge
        5. 24.3.1.5 Arbitration
      2. 24.3.2 Available Speed Modes
        1. 24.3.2.1 Standard and Fast Modes
      3. 24.3.3 Interrupts
        1. 24.3.3.1 I2C Master Interrupts
        2. 24.3.3.2 I2C Slave Interrupts
      4. 24.3.4 Loopback Operation
      5. 24.3.5 Command Sequence Flow Charts
        1. 24.3.5.1 I2C Master Command Sequences
        2. 24.3.5.2 I2C Slave Command Sequences
    4. 24.4 Initialization and Configuration
    5. 24.5 I2C Registers
      1. 24.5.1 I2C Registers
  25. 25Inter-IC Sound (I2S)
    1. 25.1 Introduction
    2. 25.2 Block Diagram
    3. 25.3 Signal Description
    4. 25.4 Functional Description
      1. 25.4.1 Dependencies
        1. 25.4.1.1 System CPU Deep-Sleep Mode
      2. 25.4.2 Pin Configuration
      3. 25.4.3 Serial Format Configuration
      4. 25.4.4 I2S
        1. 25.4.4.1 Register Configuration
      5. 25.4.5 Left-Justified (LJF)
        1. 25.4.5.1 Register Configuration
      6. 25.4.6 Right-Justified (RJF)
        1. 25.4.6.1 Register Configuration
      7. 25.4.7 DSP
        1. 25.4.7.1 Register Configuration
      8. 25.4.8 Clock Configuration
        1. 25.4.8.1 Internal Audio Clock Source
        2. 25.4.8.2 External Audio Clock Source
    5. 25.5 Memory Interface
      1. 25.5.1 Sample Word Length
      2. 25.5.2 Channel Mapping
      3. 25.5.3 Sample Storage in Memory
      4. 25.5.4 DMA Operation
        1. 25.5.4.1 Start-Up
        2. 25.5.4.2 Operation
        3. 25.5.4.3 Shutdown
    6. 25.6 Samplestamp Generator
      1. 25.6.1 Samplestamp Counters
      2. 25.6.2 Start-Up Triggers
      3. 25.6.3 Samplestamp Capture
      4. 25.6.4 Achieving Constant Audio Latency
    7. 25.7 Error Detection
    8. 25.8 Usage
      1. 25.8.1 Start-Up Sequence
      2. 25.8.2 Shutdown Sequence
    9. 25.9 I2S Registers
      1. 25.9.1 I2S Registers
  26. 26Radio
    1. 26.1  RF Core
      1. 26.1.1 High-Level Description and Overview
    2. 26.2  Radio Doorbell
      1. 26.2.1 Special Boot Process
      2. 26.2.2 Command and Status Register and Events
      3. 26.2.3 RF Core Interrupts
        1. 26.2.3.1 RF Command and Packet Engine Interrupts
        2. 26.2.3.2 RF Core Hardware Interrupts
        3. 26.2.3.3 RF Core Command Acknowledge Interrupt
      4. 26.2.4 Radio Timer
        1. 26.2.4.1 Compare and Capture Events
        2. 26.2.4.2 Radio Timer Outputs
        3. 26.2.4.3 Synchronization With Real-Time Clock
    3. 26.3  RF Core HAL
      1. 26.3.1 Hardware Support
      2. 26.3.2 Firmware Support
        1. 26.3.2.1 Commands
        2. 26.3.2.2 Command Status
        3. 26.3.2.3 Interrupts
        4. 26.3.2.4 Passing Data
        5. 26.3.2.5 Command Scheduling
          1. 26.3.2.5.1 Triggers
          2. 26.3.2.5.2 Conditional Execution
          3. 26.3.2.5.3 Handling Before Start of Command
        6. 26.3.2.6 Command Data Structures
          1. 26.3.2.6.1 Radio Operation Command Structure
        7. 26.3.2.7 Data Entry Structures
          1. 26.3.2.7.1 Data Entry Queue
          2. 26.3.2.7.2 Data Entry
          3. 26.3.2.7.3 Pointer Entry
          4. 26.3.2.7.4 Partial Read RX Entry
        8. 26.3.2.8 External Signaling
      3. 26.3.3 Command Definitions
        1. 26.3.3.1 Protocol-Independent Radio Operation Commands
          1. 26.3.3.1.1  CMD_NOP: No Operation Command
          2. 26.3.3.1.2  CMD_RADIO_SETUP: Set Up Radio Settings Command
          3. 26.3.3.1.3  CMD_FS_POWERUP: Power Up Frequency Synthesizer
          4. 26.3.3.1.4  CMD_FS_POWERDOWN: Power Down Frequency Synthesizer
          5. 26.3.3.1.5  CMD_FS: Frequency Synthesizer Controls Command
          6. 26.3.3.1.6  CMD_FS_OFF: Turn Off Frequency Synthesizer
          7. 26.3.3.1.7  CMD_RX_TEST: Receiver Test Command
          8. 26.3.3.1.8  CMD_TX_TEST: Transmitter Test Command
          9. 26.3.3.1.9  CMD_SYNC_STOP_RAT: Synchronize and Stop Radio Timer Command
          10. 26.3.3.1.10 CMD_SYNC_START_RAT: Synchronously Start Radio Timer Command
          11. 26.3.3.1.11 CMD_COUNT: Counter Command
          12. 26.3.3.1.12 CMD_SCH_IMM: Run Immediate Command as Radio Operation
          13. 26.3.3.1.13 CMD_COUNT_BRANCH: Counter Command With Branch of Command Chain
          14. 26.3.3.1.14 CMD_PATTERN_CHECK: Check a Value in Memory Against a Pattern
        2. 26.3.3.2 Protocol-Independent Direct and Immediate Commands
          1. 26.3.3.2.1  CMD_ABORT: ABORT Command
          2. 26.3.3.2.2  CMD_STOP: Stop Command
          3. 26.3.3.2.3  CMD_GET_RSSI: Read RSSI Command
          4. 26.3.3.2.4  CMD_UPDATE_RADIO_SETUP: Update Radio Settings Command
          5. 26.3.3.2.5  CMD_TRIGGER: Generate Command Trigger
          6. 26.3.3.2.6  CMD_GET_FW_INFO: Request Information on the Firmware Being Run
          7. 26.3.3.2.7  CMD_START_RAT: Asynchronously Start Radio Timer Command
          8. 26.3.3.2.8  CMD_PING: Respond With Interrupt
          9. 26.3.3.2.9  CMD_READ_RFREG: Read RF Core Register
          10. 26.3.3.2.10 CMD_SET_RAT_CMP: Set RAT Channel to Compare Mode
          11. 26.3.3.2.11 CMD_SET_RAT_CPT: Set RAT Channel to Capture Mode
          12. 26.3.3.2.12 CMD_DISABLE_RAT_CH: Disable RAT Channel
          13. 26.3.3.2.13 CMD_SET_RAT_OUTPUT: Set RAT Output to a Specified Mode
          14. 26.3.3.2.14 CMD_ARM_RAT_CH: Arm RAT Channel
          15. 26.3.3.2.15 CMD_DISARM_RAT_CH: Disarm RAT Channel
          16. 26.3.3.2.16 CMD_SET_TX_POWER: Set Transmit Power
          17. 26.3.3.2.17 CMD_SET_TX20_POWER: Set Transmit Power of the 20 dBm PA
          18. 26.3.3.2.18 CMD_UPDATE_FS: Set New Synthesizer Frequency Without Recalibration (Depricated)
          19. 26.3.3.2.19 CMD_MODIFY_FS: Set New Synthesizer Frequency Without Recalibration
          20. 26.3.3.2.20 CMD_BUS_REQUEST: Request System BUS Available for RF Core
      4. 26.3.4 Immediate Commands for Data Queue Manipulation
        1. 26.3.4.1 CMD_ADD_DATA_ENTRY: Add Data Entry to Queue
        2. 26.3.4.2 CMD_REMOVE_DATA_ENTRY: Remove First Data Entry From Queue
        3. 26.3.4.3 CMD_FLUSH_QUEUE: Flush Queue
        4. 26.3.4.4 CMD_CLEAR_RX: Clear All RX Queue Entries
        5. 26.3.4.5 CMD_REMOVE_PENDING_ENTRIES: Remove Pending Entries From Queue
    4. 26.4  Data Queue Usage
      1. 26.4.1 Operations on Data Queues Available Only for Internal Radio CPU Operations
        1. 26.4.1.1 PROC_ALLOCATE_TX: Allocate TX Entry for Reading
        2. 26.4.1.2 PROC_FREE_DATA_ENTRY: Free Allocated Data Entry
        3. 26.4.1.3 PROC_FINISH_DATA_ENTRY: Finish Use of First Data Entry From Queue
        4. 26.4.1.4 PROC_ALLOCATE_RX: Allocate RX Buffer for Storing Data
        5. 26.4.1.5 PROC_FINISH_RX: Commit Received Data to RX Data Entry
      2. 26.4.2 Radio CPU Usage Model
        1. 26.4.2.1 Receive Queues
        2. 26.4.2.2 Transmit Queues
    5. 26.5  IEEE 802.15.4
      1. 26.5.1 IEEE 802.15.4 Commands
        1. 26.5.1.1 IEEE 802.15.4 Radio Operation Command Structures
        2. 26.5.1.2 IEEE 802.15.4 Immediate Command Structures
        3. 26.5.1.3 Output Structures
        4. 26.5.1.4 Other Structures and Bit Fields
      2. 26.5.2 Interrupts
      3. 26.5.3 Data Handling
        1. 26.5.3.1 Receive Buffers
        2. 26.5.3.2 Transmit Buffers
      4. 26.5.4 Radio Operation Commands
        1. 26.5.4.1 RX Operation
          1. 26.5.4.1.1 Frame Filtering and Source Matching
            1. 26.5.4.1.1.1 Frame Filtering
            2. 26.5.4.1.1.2 Source Matching
          2. 26.5.4.1.2 Frame Reception
          3. 26.5.4.1.3 ACK Transmission
          4. 26.5.4.1.4 End of Receive Operation
          5. 26.5.4.1.5 CCA Monitoring
        2. 26.5.4.2 Energy Detect Scan Operation
        3. 26.5.4.3 CSMA-CA Operation
        4. 26.5.4.4 Transmit Operation
        5. 26.5.4.5 Receive Acknowledgment Operation
        6. 26.5.4.6 Abort Background-Level Operation Command
      5. 26.5.5 Immediate Commands
        1. 26.5.5.1 Modify CCA Parameter Command
        2. 26.5.5.2 Modify Frame-Filtering Parameter Command
        3. 26.5.5.3 Enable or Disable Source Matching Entry Command
        4. 26.5.5.4 Abort Foreground-Level Operation Command
        5. 26.5.5.5 Stop Foreground-Level Operation Command
        6. 26.5.5.6 Request CCA and RSSI Information Command
    6. 26.6  Bluetooth® low energy
      1. 26.6.1 Bluetooth® low energy Commands
        1. 26.6.1.1 Command Data Definitions
          1. 26.6.1.1.1 Bluetooth® low energy Command Structures
        2. 26.6.1.2 Parameter Structures
        3. 26.6.1.3 Output Structures
        4. 26.6.1.4 Other Structures and Bit Fields
      2. 26.6.2 Interrupts
    7. 26.7  Data Handling
      1. 26.7.1 Receive Buffers
      2. 26.7.2 Transmit Buffers
    8. 26.8  Radio Operation Command Descriptions
      1. 26.8.1  Bluetooth® 5 Radio Setup Command
      2. 26.8.2  Radio Operation Commands for Bluetooth® low energy Packet Transfer
      3. 26.8.3  Coding Selection for Coded PHY
      4. 26.8.4  Parameter Override
      5. 26.8.5  Link Layer Connection
      6. 26.8.6  Slave Command
      7. 26.8.7  Master Command
      8. 26.8.8  Legacy Advertiser
        1. 26.8.8.1 Connectable Undirected Advertiser Command
        2. 26.8.8.2 Connectable Directed Advertiser Command
        3. 26.8.8.3 Nonconnectable Advertiser Command
        4. 26.8.8.4 Scannable Undirected Advertiser Command
      9. 26.8.9  Bluetooth® 5 Advertiser Commands
        1. 26.8.9.1 Common Extended Advertising Packets
        2. 26.8.9.2 Extended Advertiser Command
        3. 26.8.9.3 Secondary Channel Advertiser Command
      10. 26.8.10 Scanner Commands
        1. 26.8.10.1 Scanner Receiving Legacy Advertising Packets on Primary Channel
        2. 26.8.10.2 Scanner Receiving Extended Advertising Packets on Primary Channel
        3. 26.8.10.3 Scanner Receiving Extended Advertising Packets on Secondary Channel
        4. 26.8.10.4 ADI Filtering
        5. 26.8.10.5 End of Scanner Commands
      11. 26.8.11 Initiator Command
        1. 26.8.11.1 Initiator Receiving Legacy Advertising Packets on Primary Channel
        2. 26.8.11.2 Initiator Receiving Extended Advertising Packets on Primary Channel
        3. 26.8.11.3 Initiator Receiving Extended Advertising Packets on Secondary Channel
        4. 26.8.11.4 Automatic Window Offset Insertion
        5. 26.8.11.5 End of Initiator Commands
      12. 26.8.12 Generic Receiver Command
      13. 26.8.13 PHY Test Transmit Command
      14. 26.8.14 Whitelist Processing
      15. 26.8.15 Backoff Procedure
      16. 26.8.16 AUX Pointer Processing
      17. 26.8.17 Dynamic Change of Device Address
    9. 26.9  Immediate Commands
      1. 26.9.1 Update Advertising Payload Command
    10. 26.10 Proprietary Radio
      1. 26.10.1 Packet Formats
      2. 26.10.2 Commands
        1. 26.10.2.1 Command Data Definitions
          1. 26.10.2.1.1 Command Structures
        2. 26.10.2.2 Output Structures
        3. 26.10.2.3 Other Structures and Bit Fields
      3. 26.10.3 Interrupts
      4. 26.10.4 Data Handling
        1. 26.10.4.1 Receive Buffers
        2. 26.10.4.2 Transmit Buffers
      5. 26.10.5 Radio Operation Command Descriptions
        1. 26.10.5.1 End of Operation
        2. 26.10.5.2 Proprietary Mode Setup Command
          1. 26.10.5.2.1 IEEE 802.15.4g Packet Format
        3. 26.10.5.3 Transmitter Commands
          1. 26.10.5.3.1 Standard Transmit Command, CMD_PROP_TX
          2. 26.10.5.3.2 Advanced Transmit Command, CMD_PROP_TX_ADV
        4. 26.10.5.4 Receiver Commands
          1. 26.10.5.4.1 Standard Receive Command, CMD_PROP_RX
          2. 26.10.5.4.2 Advanced Receive Command, CMD_PROP_RX_ADV
        5. 26.10.5.5 Carrier-Sense Operation
          1. 26.10.5.5.1 Common Carrier-Sense Description
          2. 26.10.5.5.2 Carrier-Sense Command, CMD_PROP_CS
          3. 26.10.5.5.3 Sniff Mode Receiver Commands, CMD_PROP_RX_SNIFF and CMD_PROP_RX_ADV_SNIFF
      6. 26.10.6 Immediate Commands
        1. 26.10.6.1 Set Packet Length Command, CMD_PROP_SET_LEN
        2. 26.10.6.2 Restart Packet RX Command, CMD_PROP_RESTART_RX
    11. 26.11 Radio Registers
      1. 26.11.1 RFC_RAT Registers
      2. 26.11.2 RFC_DBELL Registers
      3. 26.11.3 RFC_PWR Registers
  27. 27Revision History

CPU_ITM Registers

Table 3-67 lists the memory-mapped registers for the CPU_ITM registers. All register offset addresses not listed in Table 3-67 should be considered as reserved locations and the register contents should not be modified.

Table 3-67 CPU_ITM Registers
OffsetAcronymRegister NameSection
0hSTIM0Stimulus Port 0STIM0 Register (Offset = 0h) [Reset = 00000000h]
4hSTIM1Stimulus Port 1STIM1 Register (Offset = 4h) [Reset = 00000000h]
8hSTIM2Stimulus Port 2STIM2 Register (Offset = 8h) [Reset = 00000000h]
ChSTIM3Stimulus Port 3STIM3 Register (Offset = Ch) [Reset = 00000000h]
10hSTIM4Stimulus Port 4STIM4 Register (Offset = 10h) [Reset = 00000000h]
14hSTIM5Stimulus Port 5STIM5 Register (Offset = 14h) [Reset = 00000000h]
18hSTIM6Stimulus Port 6STIM6 Register (Offset = 18h) [Reset = 00000000h]
1ChSTIM7Stimulus Port 7STIM7 Register (Offset = 1Ch) [Reset = 00000000h]
20hSTIM8Stimulus Port 8STIM8 Register (Offset = 20h) [Reset = 00000000h]
24hSTIM9Stimulus Port 9STIM9 Register (Offset = 24h) [Reset = 00000000h]
28hSTIM10Stimulus Port 10STIM10 Register (Offset = 28h) [Reset = 00000000h]
2ChSTIM11Stimulus Port 11STIM11 Register (Offset = 2Ch) [Reset = 00000000h]
30hSTIM12Stimulus Port 12STIM12 Register (Offset = 30h) [Reset = 00000000h]
34hSTIM13Stimulus Port 13STIM13 Register (Offset = 34h) [Reset = 00000000h]
38hSTIM14Stimulus Port 14STIM14 Register (Offset = 38h) [Reset = 00000000h]
3ChSTIM15Stimulus Port 15STIM15 Register (Offset = 3Ch) [Reset = 00000000h]
40hSTIM16Stimulus Port 16STIM16 Register (Offset = 40h) [Reset = 00000000h]
44hSTIM17Stimulus Port 17STIM17 Register (Offset = 44h) [Reset = 00000000h]
48hSTIM18Stimulus Port 18STIM18 Register (Offset = 48h) [Reset = 00000000h]
4ChSTIM19Stimulus Port 19STIM19 Register (Offset = 4Ch) [Reset = 00000000h]
50hSTIM20Stimulus Port 20STIM20 Register (Offset = 50h) [Reset = 00000000h]
54hSTIM21Stimulus Port 21STIM21 Register (Offset = 54h) [Reset = 00000000h]
58hSTIM22Stimulus Port 22STIM22 Register (Offset = 58h) [Reset = 00000000h]
5ChSTIM23Stimulus Port 23STIM23 Register (Offset = 5Ch) [Reset = 00000000h]
60hSTIM24Stimulus Port 24STIM24 Register (Offset = 60h) [Reset = 00000000h]
64hSTIM25Stimulus Port 25STIM25 Register (Offset = 64h) [Reset = 00000000h]
68hSTIM26Stimulus Port 26STIM26 Register (Offset = 68h) [Reset = 00000000h]
6ChSTIM27Stimulus Port 27STIM27 Register (Offset = 6Ch) [Reset = 00000000h]
70hSTIM28Stimulus Port 28STIM28 Register (Offset = 70h) [Reset = 00000000h]
74hSTIM29Stimulus Port 29STIM29 Register (Offset = 74h) [Reset = 00000000h]
78hSTIM30Stimulus Port 30STIM30 Register (Offset = 78h) [Reset = 00000000h]
7ChSTIM31Stimulus Port 31STIM31 Register (Offset = 7Ch) [Reset = 00000000h]
E00hTERTrace EnableTER Register (Offset = E00h) [Reset = 00000000h]
E40hTPRTrace PrivilegeTPR Register (Offset = E40h) [Reset = 00000000h]
E80hTCRTrace ControlTCR Register (Offset = E80h) [Reset = 00000000h]
FB0hLARLock AccessLAR Register (Offset = FB0h) [Reset = 00000000h]
FB4hLSRLock StatusLSR Register (Offset = FB4h) [Reset = 00000003h]

Complex bit access types are encoded to fit into small table cells. Table 3-68 shows the codes that are used for access types in this section.

Table 3-68 CPU_ITM Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
Write Type
WWWrite
Reset or Default Value
-nValue after reset or the default value

3.9.3.1 STIM0 Register (Offset = 0h) [Reset = 00000000h]

STIM0 is shown in Figure 3-35 and described in Table 3-69.

Return to the Summary Table.

Stimulus Port 0

Figure 3-35 STIM0 Register
313029282726252423222120191817161514131211109876543210
STIM0
R/W-X
Table 3-69 STIM0 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM0R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA0 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.2 STIM1 Register (Offset = 4h) [Reset = 00000000h]

STIM1 is shown in Figure 3-36 and described in Table 3-70.

Return to the Summary Table.

Stimulus Port 1

Figure 3-36 STIM1 Register
313029282726252423222120191817161514131211109876543210
STIM1
R/W-X
Table 3-70 STIM1 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM1R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA1 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.3 STIM2 Register (Offset = 8h) [Reset = 00000000h]

STIM2 is shown in Figure 3-37 and described in Table 3-71.

Return to the Summary Table.

Stimulus Port 2

Figure 3-37 STIM2 Register
313029282726252423222120191817161514131211109876543210
STIM2
R/W-X
Table 3-71 STIM2 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM2R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA2 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.4 STIM3 Register (Offset = Ch) [Reset = 00000000h]

STIM3 is shown in Figure 3-38 and described in Table 3-72.

Return to the Summary Table.

Stimulus Port 3

Figure 3-38 STIM3 Register
313029282726252423222120191817161514131211109876543210
STIM3
R/W-X
Table 3-72 STIM3 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM3R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA3 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.5 STIM4 Register (Offset = 10h) [Reset = 00000000h]

STIM4 is shown in Figure 3-39 and described in Table 3-73.

Return to the Summary Table.

Stimulus Port 4

Figure 3-39 STIM4 Register
313029282726252423222120191817161514131211109876543210
STIM4
R/W-X
Table 3-73 STIM4 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM4R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA4 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.6 STIM5 Register (Offset = 14h) [Reset = 00000000h]

STIM5 is shown in Figure 3-40 and described in Table 3-74.

Return to the Summary Table.

Stimulus Port 5

Figure 3-40 STIM5 Register
313029282726252423222120191817161514131211109876543210
STIM5
R/W-X
Table 3-74 STIM5 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM5R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA5 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.7 STIM6 Register (Offset = 18h) [Reset = 00000000h]

STIM6 is shown in Figure 3-41 and described in Table 3-75.

Return to the Summary Table.

Stimulus Port 6

Figure 3-41 STIM6 Register
313029282726252423222120191817161514131211109876543210
STIM6
R/W-X
Table 3-75 STIM6 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM6R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA6 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.8 STIM7 Register (Offset = 1Ch) [Reset = 00000000h]

STIM7 is shown in Figure 3-42 and described in Table 3-76.

Return to the Summary Table.

Stimulus Port 7

Figure 3-42 STIM7 Register
313029282726252423222120191817161514131211109876543210
STIM7
R/W-X
Table 3-76 STIM7 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM7R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA7 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.9 STIM8 Register (Offset = 20h) [Reset = 00000000h]

STIM8 is shown in Figure 3-43 and described in Table 3-77.

Return to the Summary Table.

Stimulus Port 8

Figure 3-43 STIM8 Register
313029282726252423222120191817161514131211109876543210
STIM8
R/W-X
Table 3-77 STIM8 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM8R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA8 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.10 STIM9 Register (Offset = 24h) [Reset = 00000000h]

STIM9 is shown in Figure 3-44 and described in Table 3-78.

Return to the Summary Table.

Stimulus Port 9

Figure 3-44 STIM9 Register
313029282726252423222120191817161514131211109876543210
STIM9
R/W-X
Table 3-78 STIM9 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM9R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA9 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.11 STIM10 Register (Offset = 28h) [Reset = 00000000h]

STIM10 is shown in Figure 3-45 and described in Table 3-79.

Return to the Summary Table.

Stimulus Port 10

Figure 3-45 STIM10 Register
313029282726252423222120191817161514131211109876543210
STIM10
R/W-X
Table 3-79 STIM10 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM10R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA10 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.12 STIM11 Register (Offset = 2Ch) [Reset = 00000000h]

STIM11 is shown in Figure 3-46 and described in Table 3-80.

Return to the Summary Table.

Stimulus Port 11

Figure 3-46 STIM11 Register
313029282726252423222120191817161514131211109876543210
STIM11
R/W-X
Table 3-80 STIM11 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM11R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA11 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.13 STIM12 Register (Offset = 30h) [Reset = 00000000h]

STIM12 is shown in Figure 3-47 and described in Table 3-81.

Return to the Summary Table.

Stimulus Port 12

Figure 3-47 STIM12 Register
313029282726252423222120191817161514131211109876543210
STIM12
R/W-X
Table 3-81 STIM12 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM12R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA12 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.14 STIM13 Register (Offset = 34h) [Reset = 00000000h]

STIM13 is shown in Figure 3-48 and described in Table 3-82.

Return to the Summary Table.

Stimulus Port 13

Figure 3-48 STIM13 Register
313029282726252423222120191817161514131211109876543210
STIM13
R/W-X
Table 3-82 STIM13 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM13R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA13 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.15 STIM14 Register (Offset = 38h) [Reset = 00000000h]

STIM14 is shown in Figure 3-49 and described in Table 3-83.

Return to the Summary Table.

Stimulus Port 14

Figure 3-49 STIM14 Register
313029282726252423222120191817161514131211109876543210
STIM14
R/W-X
Table 3-83 STIM14 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM14R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA14 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.16 STIM15 Register (Offset = 3Ch) [Reset = 00000000h]

STIM15 is shown in Figure 3-50 and described in Table 3-84.

Return to the Summary Table.

Stimulus Port 15

Figure 3-50 STIM15 Register
313029282726252423222120191817161514131211109876543210
STIM15
R/W-X
Table 3-84 STIM15 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM15R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA15 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.17 STIM16 Register (Offset = 40h) [Reset = 00000000h]

STIM16 is shown in Figure 3-51 and described in Table 3-85.

Return to the Summary Table.

Stimulus Port 16

Figure 3-51 STIM16 Register
313029282726252423222120191817161514131211109876543210
STIM16
R/W-X
Table 3-85 STIM16 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM16R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA16 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.18 STIM17 Register (Offset = 44h) [Reset = 00000000h]

STIM17 is shown in Figure 3-52 and described in Table 3-86.

Return to the Summary Table.

Stimulus Port 17

Figure 3-52 STIM17 Register
313029282726252423222120191817161514131211109876543210
STIM17
R/W-X
Table 3-86 STIM17 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM17R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA17 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.19 STIM18 Register (Offset = 48h) [Reset = 00000000h]

STIM18 is shown in Figure 3-53 and described in Table 3-87.

Return to the Summary Table.

Stimulus Port 18

Figure 3-53 STIM18 Register
313029282726252423222120191817161514131211109876543210
STIM18
R/W-X
Table 3-87 STIM18 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM18R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA18 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.20 STIM19 Register (Offset = 4Ch) [Reset = 00000000h]

STIM19 is shown in Figure 3-54 and described in Table 3-88.

Return to the Summary Table.

Stimulus Port 19

Figure 3-54 STIM19 Register
313029282726252423222120191817161514131211109876543210
STIM19
R/W-X
Table 3-88 STIM19 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM19R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA19 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.21 STIM20 Register (Offset = 50h) [Reset = 00000000h]

STIM20 is shown in Figure 3-55 and described in Table 3-89.

Return to the Summary Table.

Stimulus Port 20

Figure 3-55 STIM20 Register
313029282726252423222120191817161514131211109876543210
STIM20
R/W-X
Table 3-89 STIM20 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM20R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA20 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.22 STIM21 Register (Offset = 54h) [Reset = 00000000h]

STIM21 is shown in Figure 3-56 and described in Table 3-90.

Return to the Summary Table.

Stimulus Port 21

Figure 3-56 STIM21 Register
313029282726252423222120191817161514131211109876543210
STIM21
R/W-X
Table 3-90 STIM21 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM21R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA21 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.23 STIM22 Register (Offset = 58h) [Reset = 00000000h]

STIM22 is shown in Figure 3-57 and described in Table 3-91.

Return to the Summary Table.

Stimulus Port 22

Figure 3-57 STIM22 Register
313029282726252423222120191817161514131211109876543210
STIM22
R/W-X
Table 3-91 STIM22 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM22R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA22 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.24 STIM23 Register (Offset = 5Ch) [Reset = 00000000h]

STIM23 is shown in Figure 3-58 and described in Table 3-92.

Return to the Summary Table.

Stimulus Port 23

Figure 3-58 STIM23 Register
313029282726252423222120191817161514131211109876543210
STIM23
R/W-X
Table 3-92 STIM23 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM23R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA23 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.25 STIM24 Register (Offset = 60h) [Reset = 00000000h]

STIM24 is shown in Figure 3-59 and described in Table 3-93.

Return to the Summary Table.

Stimulus Port 24

Figure 3-59 STIM24 Register
313029282726252423222120191817161514131211109876543210
STIM24
R/W-X
Table 3-93 STIM24 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM24R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA24 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.26 STIM25 Register (Offset = 64h) [Reset = 00000000h]

STIM25 is shown in Figure 3-60 and described in Table 3-94.

Return to the Summary Table.

Stimulus Port 25

Figure 3-60 STIM25 Register
313029282726252423222120191817161514131211109876543210
STIM25
R/W-X
Table 3-94 STIM25 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM25R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA25 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.27 STIM26 Register (Offset = 68h) [Reset = 00000000h]

STIM26 is shown in Figure 3-61 and described in Table 3-95.

Return to the Summary Table.

Stimulus Port 26

Figure 3-61 STIM26 Register
313029282726252423222120191817161514131211109876543210
STIM26
R/W-X
Table 3-95 STIM26 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM26R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA26 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.28 STIM27 Register (Offset = 6Ch) [Reset = 00000000h]

STIM27 is shown in Figure 3-62 and described in Table 3-96.

Return to the Summary Table.

Stimulus Port 27

Figure 3-62 STIM27 Register
313029282726252423222120191817161514131211109876543210
STIM27
R/W-X
Table 3-96 STIM27 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM27R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA27 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.29 STIM28 Register (Offset = 70h) [Reset = 00000000h]

STIM28 is shown in Figure 3-63 and described in Table 3-97.

Return to the Summary Table.

Stimulus Port 28

Figure 3-63 STIM28 Register
313029282726252423222120191817161514131211109876543210
STIM28
R/W-X
Table 3-97 STIM28 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM28R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA28 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.30 STIM29 Register (Offset = 74h) [Reset = 00000000h]

STIM29 is shown in Figure 3-64 and described in Table 3-98.

Return to the Summary Table.

Stimulus Port 29

Figure 3-64 STIM29 Register
313029282726252423222120191817161514131211109876543210
STIM29
R/W-X
Table 3-98 STIM29 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM29R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA29 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.31 STIM30 Register (Offset = 78h) [Reset = 00000000h]

STIM30 is shown in Figure 3-65 and described in Table 3-99.

Return to the Summary Table.

Stimulus Port 30

Figure 3-65 STIM30 Register
313029282726252423222120191817161514131211109876543210
STIM30
R/W-X
Table 3-99 STIM30 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM30R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA30 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.32 STIM31 Register (Offset = 7Ch) [Reset = 00000000h]

STIM31 is shown in Figure 3-66 and described in Table 3-100.

Return to the Summary Table.

Stimulus Port 31

Figure 3-66 STIM31 Register
313029282726252423222120191817161514131211109876543210
STIM31
R/W-X
Table 3-100 STIM31 Register Field Descriptions
BitFieldTypeResetDescription
31-0STIM31R/WXA write to this location causes data to be written into the FIFO if TER.STIMENA31 is set. Reading from the stimulus port returns the FIFO status in bit [0]: 0 = full, 1 = not full. The polled FIFO interface does not provide an atomic read-modify-write, so it's users responsibility to ensure exclusive read-modify-write if this ITM port is used concurrently by interrupts or other threads.

3.9.3.33 TER Register (Offset = E00h) [Reset = 00000000h]

TER is shown in Figure 3-67 and described in Table 3-101.

Return to the Summary Table.

Trace Enable
Use the Trace Enable Register to generate trace data by writing to the corresponding stimulus port. Note: Privileged writes are accepted to this register if TCR.ITMENA is set. User writes are accepted to this register if TCR.ITMENA is set and the appropriate privilege mask is cleared. Privileged access to the stimulus ports enables an RTOS kernel to guarantee instrumentation slots or bandwidth as required.

Figure 3-67 TER Register
3130292827262524
STIMENA31STIMENA30STIMENA29STIMENA28STIMENA27STIMENA26STIMENA25STIMENA24
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
STIMENA23STIMENA22STIMENA21STIMENA20STIMENA19STIMENA18STIMENA17STIMENA16
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
STIMENA15STIMENA14STIMENA13STIMENA12STIMENA11STIMENA10STIMENA9STIMENA8
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
STIMENA7STIMENA6STIMENA5STIMENA4STIMENA3STIMENA2STIMENA1STIMENA0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-101 TER Register Field Descriptions
BitFieldTypeResetDescription
31STIMENA31R/W0hBit mask to enable tracing on ITM stimulus port 31.
30STIMENA30R/W0hBit mask to enable tracing on ITM stimulus port 30.
29STIMENA29R/W0hBit mask to enable tracing on ITM stimulus port 29.
28STIMENA28R/W0hBit mask to enable tracing on ITM stimulus port 28.
27STIMENA27R/W0hBit mask to enable tracing on ITM stimulus port 27.
26STIMENA26R/W0hBit mask to enable tracing on ITM stimulus port 26.
25STIMENA25R/W0hBit mask to enable tracing on ITM stimulus port 25.
24STIMENA24R/W0hBit mask to enable tracing on ITM stimulus port 24.
23STIMENA23R/W0hBit mask to enable tracing on ITM stimulus port 23.
22STIMENA22R/W0hBit mask to enable tracing on ITM stimulus port 22.
21STIMENA21R/W0hBit mask to enable tracing on ITM stimulus port 21.
20STIMENA20R/W0hBit mask to enable tracing on ITM stimulus port 20.
19STIMENA19R/W0hBit mask to enable tracing on ITM stimulus port 19.
18STIMENA18R/W0hBit mask to enable tracing on ITM stimulus port 18.
17STIMENA17R/W0hBit mask to enable tracing on ITM stimulus port 17.
16STIMENA16R/W0hBit mask to enable tracing on ITM stimulus port 16.
15STIMENA15R/W0hBit mask to enable tracing on ITM stimulus port 15.
14STIMENA14R/W0hBit mask to enable tracing on ITM stimulus port 14.
13STIMENA13R/W0hBit mask to enable tracing on ITM stimulus port 13.
12STIMENA12R/W0hBit mask to enable tracing on ITM stimulus port 12.
11STIMENA11R/W0hBit mask to enable tracing on ITM stimulus port 11.
10STIMENA10R/W0hBit mask to enable tracing on ITM stimulus port 10.
9STIMENA9R/W0hBit mask to enable tracing on ITM stimulus port 9.
8STIMENA8R/W0hBit mask to enable tracing on ITM stimulus port 8.
7STIMENA7R/W0hBit mask to enable tracing on ITM stimulus port 7.
6STIMENA6R/W0hBit mask to enable tracing on ITM stimulus port 6.
5STIMENA5R/W0hBit mask to enable tracing on ITM stimulus port 5.
4STIMENA4R/W0hBit mask to enable tracing on ITM stimulus port 4.
3STIMENA3R/W0hBit mask to enable tracing on ITM stimulus port 3.
2STIMENA2R/W0hBit mask to enable tracing on ITM stimulus port 2.
1STIMENA1R/W0hBit mask to enable tracing on ITM stimulus port 1.
0STIMENA0R/W0hBit mask to enable tracing on ITM stimulus port 0.

3.9.3.34 TPR Register (Offset = E40h) [Reset = 00000000h]

TPR is shown in Figure 3-68 and described in Table 3-102.

Return to the Summary Table.

Trace Privilege
This register is used to enable an operating system to control which stimulus ports are accessible by user code. This register can only be used in privileged mode.

Figure 3-68 TPR Register
31302928272625242322212019181716
RESERVED
R/W-0h
1514131211109876543210
RESERVEDPRIVMASK
R/W-0hR/W-0h
Table 3-102 TPR Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR/W0hSoftware should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior.
3-0PRIVMASKR/W0hBit mask to enable unprivileged (User) access to ITM stimulus ports:
Bit [0] enables stimulus ports 0, 1, ..., and 7.
Bit [1] enables stimulus ports 8, 9, ..., and 15.
Bit [2] enables stimulus ports 16, 17, ..., and 23.
Bit [3] enables stimulus ports 24, 25, ..., and 31.
0: User access allowed to stimulus ports
1: Privileged access only to stimulus ports

3.9.3.35 TCR Register (Offset = E80h) [Reset = 00000000h]

TCR is shown in Figure 3-69 and described in Table 3-103.

Return to the Summary Table.

Trace Control
Use this register to configure and control ITM transfers. This register can only be written in privilege mode. DWT is not enabled in the ITM block. However, DWT stimulus entry into the FIFO is controlled by DWTENA. If DWT requires timestamping, the TSENA bit must be set.

Figure 3-69 TCR Register
3130292827262524
RESERVED
R/W-0h
2322212019181716
BUSYATBID
R/W-0hR/W-0h
15141312111098
RESERVEDTSPRESCALE
R/W-0hR/W-0h
76543210
RESERVEDSWOENADWTENASYNCENATSENAITMENA
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-103 TCR Register Field Descriptions
BitFieldTypeResetDescription
31-24RESERVEDR/W0hSoftware should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior.
23BUSYR/W0hSet when ITM events present and being drained.
22-16ATBIDR/W0hTrace Bus ID for CoreSight system. Optional identifier for multi-source trace stream formatting. If multi-source trace is in use, this field must be written with a non-zero value.
15-10RESERVEDR/W0hSoftware should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior.
9-8TSPRESCALER/W0hTimestamp prescaler
0h = No prescaling
1h = Divide by 4
2h = Divide by 16
3h = Divide by 64
7-5RESERVEDR/W0hSoftware should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior.
4SWOENAR/W0hEnables asynchronous clocking of the timestamp counter (when TSENA = 1). If TSENA = 0, writing this bit to 1 does not enable asynchronous clocking of the timestamp counter.
0x0: Mode disabled. Timestamp counter uses system clock from the core and counts continuously.
0x1: Timestamp counter uses lineout (data related) clock from TPIU interface. The timestamp counter is held in reset while the output line is idle.
3DWTENAR/W0hEnables the DWT stimulus (hardware event packet emission to the TPIU from the DWT)
2SYNCENAR/W0hEnables synchronization packet transmission for a synchronous TPIU.
CPU_DWT:CTRL.SYNCTAP must be configured for the correct synchronization speed.
1TSENAR/W0hEnables differential timestamps. Differential timestamps are emitted when a packet is written to the FIFO with a non-zero timestamp counter, and when the timestamp counter overflows. Timestamps are emitted during idle times after a fixed number of two million cycles. This provides a time reference for packets and inter-packet gaps. If SWOENA (bit [4]) is set, timestamps are triggered by activity on the internal trace bus only. In this case there is no regular timestamp output when the ITM is idle.
0ITMENAR/W0hEnables ITM. This is the master enable, and must be set before ITM Stimulus and Trace Enable registers can be written.

3.9.3.36 LAR Register (Offset = FB0h) [Reset = 00000000h]

LAR is shown in Figure 3-70 and described in Table 3-104.

Return to the Summary Table.

Lock Access
This register is used to prevent write accesses to the Control Registers: TER, TPR and TCR.

Figure 3-70 LAR Register
313029282726252423222120191817161514131211109876543210
LOCK_ACCESS
W-0h
Table 3-104 LAR Register Field Descriptions
BitFieldTypeResetDescription
31-0LOCK_ACCESSW0hA privileged write of 0xC5ACCE55 enables more write access to Control Registers TER, TPR and TCR. An invalid write removes write access.

3.9.3.37 LSR Register (Offset = FB4h) [Reset = 00000003h]

LSR is shown in Figure 3-71 and described in Table 3-105.

Return to the Summary Table.

Lock Status
Use this register to enable write accesses to the Control Register.

Figure 3-71 LSR Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDBYTEACCACCESSPRESENT
R-0hR-0hR-1hR-1h
Table 3-105 LSR Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR0hSoftware should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior.
2BYTEACCR0hReads 0 which means 8-bit lock access is not be implemented.
1ACCESSR1hWrite access to component is blocked. All writes are ignored, reads are permitted.
0PRESENTR1hIndicates that a lock mechanism exists for this component.