TIDUF20 December   2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Auxiliary Power Strategy
      2. 2.2.2 High-Side N-Channel MOSFET
      3. 2.2.3 Stacked AFE Communication
    3. 2.3 Highlighted Products
      1. 2.3.1 BQ76942
      2. 2.3.2 LM5168
      3. 2.3.3 ISO1640
      4. 2.3.4 TCAN1042HV
      5. 2.3.5 THVD2410
      6. 2.3.6 TPS7A25
      7. 2.3.7 MSP430FR2155
      8. 2.3.8 TMP61
      9. 2.3.9 TPD2E007
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Cell Voltage Accuracy
      2. 3.3.2 Pack Current Accuracy
      3. 3.3.3 Auxiliary Power and System Current Consumption
      4. 3.3.4 Protection
      5. 3.3.5 Working Modes Transition
      6. 3.3.6 ESD Performance
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  10. 5About the Author

ISO1640

The ISO1640, ISO1641, ISO1642, ISO1643 and ISO1644 (ISO164x) devices are hot-swappable, low-power, bidirectional isolators that are compatible with I2C interfaces. The ISO164x supports UL 1577 isolation ratings of 5000 VRMS in the 16-DW package, and 3000 VRMS in the 8-D package. Each I2C isolation channel in this low emissions device has a logic input and open drain output separated by a double capacitive silicon dioxide (SiO2) insulation barrier. The ISO1642 and ISO1643 integrates two unidirectional CMOS isolation channels, while the ISO1644 integrates three unidirectional CMOS isolation channels which can be used for static GPIO isolation or to isolate a Serial Peripheral Interface (SPI) bus. This family includes basic and reinforced insulation devices certified by VDE, UL, CSA, TUV and CQC. The ISO1640, ISO1642, ISO1643, and ISO1644 have two isolated bidirectional channels for clock and data lines and the ISO1641 has a bidirectional data and a unidirectional clock channel. The ISO164x family integrates logic required to support bidirectional channels, providing a much simpler design and smaller footprint when compared to optocoupler-based designs.