TIDUF27A February   2025  – March 2025 AMC131M03 , MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 End Equipment
    3. 1.3 Electricity Meter
    4. 1.4 Power Quality Meter, Power Quality Analyzer
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Voltage Measurement Analog Front End
      2. 2.2.2 Analog Front End for Current Measurement
      3. 2.2.3 XDS110 Emulator
      4. 2.2.4 Bluetooth® Data Transmission
      5. 2.2.5 Bluetooth® Connection Between Two Modules
      6. 2.2.6 Bluetooth® to UART Connection
      7. 2.2.7 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
    3. 2.3 Highlighted Products
      1. 2.3.1  MSPM0G3507
      2. 2.3.2  AMC131M03
      3. 2.3.3  CDC6C
      4. 2.3.4  RES60A-Q1
      5. 2.3.5  TPS3702
      6. 2.3.6  TPD4E05U06
      7. 2.3.7  ISOUSB111
      8. 2.3.8  LMK1C1104
      9. 2.3.9  MSP432E401Y
      10. 2.3.10 TPS709
      11. 2.3.11 TMAG5273
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Clocking System
        1. 3.1.1.1 BAW Oscillator
        2. 3.1.1.2 Crystal Oscillator
        3. 3.1.1.3 PWM
        4. 3.1.1.4 Clock Buffers
      2. 3.1.2 SPI Bus Configuration
      3. 3.1.3 Jumper Settings for LED and UART
    2. 3.2 Software Requirements
      1. 3.2.1 UART for PC GUI Communication
      2. 3.2.2 Direct Memory Access (DMA)
      3. 3.2.3 ADC Setup
      4. 3.2.4 Calibration
    3. 3.3 Test Setup
      1. 3.3.1 Connections to the Test Setup
      2. 3.3.2 Power Supply Options and Jumper Settings
        1.       51
      3. 3.3.3 Cautions and Warnings
    4. 3.4 Test Results
      1. 3.4.1 Electricity Meter Metrology Accuracy Results
      2. 3.4.2 Radiated Emissions Performance
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
  12. 6Revision History

MSP432E401Y

The SimpleLink MSP432E401Y Arm Cortex-M4F microcontrollers provide top performance and advanced integration. The product family is positioned for cost-effective applications requiring significant control processing and connectivity capabilities. The MSP432E401Y microcontrollers integrate a large variety of rich communication features to enable a new class of highly connected designs with the ability to allow critical real-time control between performance and power. The microcontrollers feature integrated communication peripherals along with other high-performance analog and digital functions to offer a strong foundation for many different target uses, spanning from human-machine interface (HMI) to networked system management controllers. In addition, the MSP432E401Y microcontrollers offer the advantages of widely available development tools, system-on-chip (SoC) infrastructure, and a large user community for Arm-based microcontrollers. Additionally, these microcontrollers use the Arm Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. When using the SimpleLink MSP432™ SDK, the MSP432E401Y microcontroller is code compatible with all members of the extensive SimpleLink family, providing flexibility to fit precise needs. The MSP432E401Y device is part of the SimpleLink microcontroller (MCU) platform, which consists of Wi-Fi®, Bluetooth® low energy, Sub-1GHz, Ethernet, ZigBee®, Thread, and host MCUs, which all share a common, easy-to-use development environment with a single core software development kit (SDK) and rich tool set.