TIDUFA5 December   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Small Compact Size
      2. 2.2.2 Transformerless Design
    3. 2.3 Highlighted Products
      1. 2.3.1  BQ25790 IIC Controlled, 1–4 Cell, 5A Buck-Boost Battery Charger
      2. 2.3.2  TPS3422 Low-Power, Push-Button Controllers With Configurable Delay
      3. 2.3.3  SN74LVC1G74 Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset
      4. 2.3.4  TPS259470 2.7V–23V, 5.5A, 28mΩ True Reverse Current Blocking eFuse
      5. 2.3.5  TPS54218 2.95V to 6V Input, 2A Synchronous Step-Down SWIFT Converter
      6. 2.3.6  TPS54318 2.95V to 6V Input, 3A Synchronous Step-Down SWIFT Converter
      7. 2.3.7  LM5158 2.2MHz, Wide VIN, 85V Output Boost, SEPIC, or Flyback Converter
      8. 2.3.8  TPS61178 20V Fully Integrated Sync Boost With Load Disconnect
      9. 2.3.9  LMZM23601 36V, 1A Step-Down DC-DC Power Module in 3.8mm × 3mm Package
      10. 2.3.10 TPS7A39 Dual, 150mA, Wide-VIN, Positive and Negative Low-Dropout (LDO) Voltage Regulator
      11. 2.3.11 TPS74401 3.0A, Ultra-LDO With Programmable Soft Start
      12. 2.3.12 TPS7A96 2A, Ultra-Low Noise, Ultra-high PSRR RF Voltage Regulator
      13. 2.3.13 LM3880 3-Rail Simple Power Sequencer With Fixed Time Delay
      14. 2.3.14 DAC53401 10-Bit, Voltage-Output DAC With Nonvolatile Memory
      15. 2.3.15 INA231 28V, 16-bit, I2C Output Current, Voltage, and Power Monitor With Alert in WCSP
  9. 3System Design Theory
    1. 3.1 Input Section
      1. 3.1.1 Buck-Boost Charger
      2. 3.1.2 Power On or Off
    2. 3.2 Designing SEPIC and Cuk Based High-Voltage Power Supply
      1. 3.2.1 Basic Operation Principle of SEPIC and Cuk Converters
      2. 3.2.2 Dual High-Voltage Power Supply Design Using Uncoupled Inductors With SEPIC and Cuk
        1. 3.2.2.1 Duty Cycle
        2. 3.2.2.2 Inductor Selection
        3. 3.2.2.3 Power MOSFET Verification
        4. 3.2.2.4 Output Diode Selection
        5. 3.2.2.5 Coupling Capacitor Selection
        6. 3.2.2.6 Output Capacitor Selection
        7. 3.2.2.7 Input Capacitor Selection
        8. 3.2.2.8 Programming the Output Voltage With Adjustable function
    3. 3.3 Designing the Low-Voltage Power Supply
      1. 3.3.1 Designing the TPS54218 Through WEBENCH Power Designer
      2. 3.3.2 ±5V Transmit Supply Generation
    4. 3.4 System Clock Synchronization
    5. 3.5 Power and Data Output Connector
    6. 3.6 System Current and Power Monitoring
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Efficiency Test Result
      2. 4.3.2 Line Regulation Testing Result
      3. 4.3.3 Spectrum Test Result
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 High-Voltage Supply Layout
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks

Key System Specifications

Table 1-1 shows the complete system specifications of the power design of the smart probe. The table is divided into two sections describing specifications of the high-voltage circuit and low-voltage circuit.

Table 1-1 Key System Specifications
PARAMETERSPECIFICATIONSDETAILS
System Input Voltage (VIN)4.25V–5.5V (USB Type-C)Design supports 1S– battery input (3.3V–4.2V)
External Clock Synchronization1MHz, 500kHz, and 250kHzOnboard buffer or divider is used to provide the sync clock from 1MHz source
HIGH VOLTAGE CIRCUIT SPECIFICATIONS Architecture: Single-Ended Primary Inductance Converter and Cuk (SEPIC and Cuk)
Positive Output Voltage (VOUT+)Up to 75VSymmetric positive and negative output. Can be set by external feedback resistors
Negative Output Voltage (VOUT–)Up to –75V
Output Current (IOUT)Up to 25mA per rail
Total High Voltage Power (PHV)2.25W + 2.25W
Load Regulation< 2%Load applied symmetrically on positive and negative rail
Voltage Accuracy< 1%Voltage accuracy: voltage difference between positive and negative rail across the load
Output Voltage Ripple0.1% of the output voltage
Switching frequency250kHz
TRANSMIT LOW VOLTAGE SUPPLY (±5V) SPECIFICATIONS
Switcher Output Voltage (positive)5.7VThis boost output can be fed as input to the high-voltage supply or –5V supply to enable 1S operation.
LDO Output Voltage5V
Output Current150mAMaximum LDO output current
Output Voltage Ripple10mV (VOUT : 5.7V IOUT : 1A)
Switcher Output Voltage (negative)–5.3VInverting Buck Topology
LDO Output Voltage–5V
Output Current150mA
Output Voltage Ripple10mV (VOUT : –5.3V IOUT : 1A)
RECEIVE LOW-VOLTAGE SUPPLY SPECIFICATIONS
AFEs Supply Rails with Low Noise LDOs1.2V (2A maximum),
1.8V (1A maximum),
TPS7A96, TPS74401 LDOs are used for respective rails followed after the TPS54218 DC-DC buck
Switcher Output Voltage2V, 1.405VLow dropout to maximize system efficiency
DC-DC Output Voltage Ripple (1.405V)8mV
TPS74401 (1.2V) PSRR (Output Ripple) at 500kHz–40dB (80µV)
DC-DC Output Voltage Ripple (2.0V)8mV
TPS7A9601 (1.8V) PSRR (Output Ripple) at 500kHz–40dB (80µV)
FPGA POWER SUPPLY SPECIFICATIONS
Switcher Output Voltage1V (0.5A maximum),
1.8V (0.5A maximum),
2.5V (0.5A maximum)
The inductance values are optimized for higher efficiency and load currents of 0.5A
Maximum Output Voltage Ripple15mV
System Power MeasurementTotal Power; FPGA Power and TX PowerSystem current, voltage and power measurement of various subsystems using INA231